Skip to main content

Advertisement

Log in

RF integrated inductor modeling and its application to optimization-based design

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper an optimization-based approach for the design of RF integrated inductors is addressed. For the characterisation of the inductor behaviour the double π-model is used. The use of this model is twofold. On one hand it enables the generation of the inductor characterisation in a few seconds. On the other hand its integration into the optimization procedure is straightforward. For the evaluation of the model element values analytical expressions based on technology parameters as well as on the device geometric characteristics are used. The use of a technology-based methodology for the evaluation of the model parameters grants the adaptability of the model to any technology. The inductor analytical characterization is integrated into an optimization-based tool for the automatic design of RF integrated inductors. This tool uses a modified genetic algorithm (MGA) optimization procedure, which has proved its validation in previous work. Due to the design parameter constraints nature as well as the topology constraints, discrete variables optimization techniques are used. The accuracy of the results is checked against a non-commercial software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Porret, A. S., Melly, T., Python, D., Enz, C. C., & Vittoz, E. A. (2001). An ultralow-power UHF transceiver integrated in a standard digital CMOS process: Architecture and receiver. IEEE Journal of Solid-State Circuits, 36, 452–466.

    Article  Google Scholar 

  2. Hamm, D. (2002). Design of Integrated LC VVCOs. In C. Toumazou, G. Moschytz & B. Gilbert (Eds.), Trade-offs in analog circuit design, Chapter 18 (pp. 517–589). Dordrecht: Kluwer Academic Publishers. ISBN 1-4020-7037-3.

  3. Yue, P., & Wong, S. S. (2000). Physical modeling of spiral inductors on silicon. IEEE Transactions on Electron Devices, 47(3), 560–568.

    Article  Google Scholar 

  4. Cao, Y., Groves, R. A., Huang, X., Zamdmer, N. D., Plouchart, J. O., Wachnik, R. A., et al. (2003). Frequency-independent equivalent-circuit model for on-chip spiral inductors. IEEE Journal of Solid-State Circuits, 38(3), 419–426.

    Article  Google Scholar 

  5. Nieuwoudt, A., & Massoud, Y. (2005). Multi-level approach for integrated spiral inductor optimization. Proceedings of the Design Automation Conference (pp. 648–651). doi:10.1145/1065579.1065749.

  6. Allstot, D. J., Choi, K., & Park J. (2003). Parasitic-aware optimization of CMOS RF circuits. Dordrecht: Kluwer Academic Publishers. ISBN 1-4020-7399-2.

  7. Chan, T., Lu, H., Zeng, Z., & Chen, C. (2008). LTCC spiral inductor modeling, synthesis and optimization. Proceedings of the 13th Asia and South Pacific Design Automation Conference (pp. 768–771). doi:10.1109/ASPDAC.2008.4484054.

  8. Pereira, P., Fino. M. H., & Coito, F. V. (2009). Using discrete-variable optimization for CMOS spiral inductor design. Proceedings of the International Conference on Microelectronics (pp. 324–327). doi:10.1109/ICM.2009.5418617.

  9. Pereira, P., Fino. M. H., Coito, F. V., & Ventim-Neves, M. (2009). ADISI—An efficient tool for the automatic design of integrated spiral inductors. Proceedings of the 16th IEEE International Conference on Electronics, Circuits, and Systems (pp. 799–802). doi:10.1109/ICECS.2009.5410776.

  10. Stelmack, M., Nakashima, N., & Batill, S. (1998). Genetic algortihms for mixed discrete/continuous optimization in multidisciplinary design. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (pp. 499–509).

  11. Wankhede, M., & Deshmukh, A. (2009). Optimization of cell-based VLSI circuit design using a genetic algorithm: Design approach. Proceedings of the International Multiconference of Engineers and Computer Scientists (pp. 1603–1608). ISBN 978-988-17012-7-5.

  12. Mohan, S. S., del Mar Hershenson, M., Boyd, S. P., & Lee, T. H. (1999). Simple accurate expressions for planar spiral inductances. IEEE Journal of Solid-State Circuits, 34(10), 1419–1424. doi:10.1109/4.792620.

    Article  Google Scholar 

  13. Wong, S.-C., Lee, G.-Y., & Ma, D.-J. (2000). Modeling of interconnect capacitance, delay, and crosstalk in VLSI. IEEE Transactions on Semiconductor Manufacturing, 13(1), 108–111. doi:10.1109/66.827350.

    Article  Google Scholar 

  14. Pereira, P., Fino. M. H., & Ventim-Neves, M. (2010). Automatic generation of RF integrated inductors analytical characterization. Proceedings of the XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD). doi:10.1109/SM2ACD.2010.5672295.

  15. Sia, C. B., Yeo, K. S., Goh, W. L., Swe, T. N., Ma, J. G., Do, M. A., Lin, J. S., & Chan, L. (2001). A simple and scalable model for spiral inductors on silicon. Proceedings of the International Conference on Modeling and Simulation of Microsystems (pp. 358–361). ISBN 0-9708275-0-4.

  16. Hara, S., Ito, T., Okada, K., & Matsuzawa, A. (2008). Design space exploration of low-phase-noise LC-VCO using multiple-divide technique. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1966–1969). doi:10.1109/ISCAS.2008.4541830.

  17. Long, J. R., & Copeland, M. A. (1997). The modeling, characterization, and design of monolithic inductors for silicon RF IC’s. IEEE Journal of Solid-State Circuits, 32, 357–369. doi:10.1109/4.557634.

    Article  Google Scholar 

  18. Koutsoyannopoulos, Y. K., & Papananos, Y. (2000). Systematic analysis and modeling of integrated inductors and transformers in RF IC design. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 47, 699–713. doi:10.1109/82.861403.

    Article  Google Scholar 

  19. Christensen, K. T., & Jorgensen, A. (1998). Easy simulation and design of on-chip inductors in standard CMOS processes. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’98) (Vol. 4, pp. 360–364). doi:10.1109/ISCAS.1998.698855.

  20. Aguilera, J., & Berenguer, R. (2004). Design and test of integrated inductors for RF applications. Dordrecht: Kluwer Academic Publishers. ISBN 1-4020-7676-2.

  21. Sivanandam, S., & Deepa, S. (2008). Introduction to genetic algorithms. Berlin: Springer.

    MATH  Google Scholar 

  22. Matlab GA Toolbox. www.mathworks.com.

  23. Pereira, P., Fino. M. H., Coito, F. V., & Ventim-Neves, M. (2010). GADISI—Genetic algorithms applied to the automatic design of integrated spiral inductors. Proceedings of the Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS)—Emerging Trends in Technological Innovation (pp. 515–522). Springer. doi:10.1007/978-3-642-11628-5_57.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, P., Helena Fino, M., Coito, F. et al. RF integrated inductor modeling and its application to optimization-based design. Analog Integr Circ Sig Process 73, 47–55 (2012). https://doi.org/10.1007/s10470-011-9682-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9682-x

Keywords

Navigation