Skip to main content
Log in

A 2GS/s 6-bit CMOS time-interleaved ADC for analysis of mixed-signal calibration techniques

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A 2-GS/s 6-bit time interleaved (TI) successive approximation register (SAR) analog-to-digital converter (ADC) is designed and fabricated in a 0.13 \(\upmu\)m CMOS process. The architecture uses 8 time-interleaved track-and-hold amplifiers (THA) and 16 asynchronous SAR ADCs. The sampling frequency of the TI-ADC can be set from 200 MHz to more than 2 GHz. The chip includes a programmable delay cell array to adjust up to \(\pm\)25 % the sampling clock phase in each THA, and a multi-channel low voltage differential signaling interface capable of transmitting at full sampling rate (\(\geqslant\)12 Gb/s), without decimation, off-chip. These blocks make the fabricated ADC an excellent platform to test/evaluate mixed-signal calibration algorithms, which are of great interest for application in high-speed optical systems. Measurements of the fabricated ADC show a peak signal-to-noise-and-distortion ratio of 33.9 dB and a power consumption of 192 mW at 1.2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. Background calibration is usually preferred over foreground techniques due to its capability to track time variations of temperature and voltage.

  2. We highlight that an A-SAR requires a more careful design than an S-SAR topology.

  3. Note that fine and coarse delay control are daisy-chained but they are not designed to be controlled simultaneously because they have different applications.

  4. Note that each THA buffer introduces an inter-slice offset, but this mismatch is compensated with a digital off-chip processing.

  5. These measurements were carried out with the VGA bypassed.

  6. Each delay cell was adjusted by an iterative method to find the best SNDR of a sinusoidal input signal at near Nyquist frequency.

References

  1. IEEE Std 1596.3-1996. IEEE standard for low-voltage differential signals (LVDS) for scalable coherent interface (SCI) (1996). doi:10.1109/IEEESTD.1996.81028.

  2. Black, W. C, Jr, & Hodges, D. (1980). Time interleaved converter arrays. IEEE Journal of Solid-State Circuits, 15(6), 1022–1029. doi:10.1109/JSSC.1980.1051512.

    Article  Google Scholar 

  3. Boni, A., Pierazzi, A., & Vecchi, D. (2001). LVDS I/O interface for Gb/s-per-pin operation in 0.35- m CMOS. IEEE Journal of Solid-State Circuits, 36(4), 706–711. doi:10.1109/4.913751.

    Article  Google Scholar 

  4. Cao, J., Zhang, B., Singh, U., Cui, D., Vasani, A., Garg, A., et al. (2010). A 500 mW ADC-based CMOS AFE with digital calibration for 10 Gb/s serial links over KR-backplane and multimode fiber. IEEE Journal of Solid-State Circuits, 45(6), 1172–1185. doi:10.1109/JSSC.2010.2047473.

    Article  Google Scholar 

  5. Cao, Z., Yan, S., & Li, Y. (2009). A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13 μm CMOS. IEEE Journal of Solid-State Circuits, 44(3), 862–873. doi:10.1109/JSSC.2008.2012329.

    Article  Google Scholar 

  6. Chen, M., Silva-Martinez, J., Nix, M., & Robinson, M. (2005). Low-voltage low-power LVDS drivers. IEEE Journal of Solid-State Circuits, 40(2), 472–479. doi:10.1109/JSSC.2004.840955.

    Article  Google Scholar 

  7. Chen, S. W. M., & Brodersen, R. W. (2006). A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13 μm CMOS. IEEE Journal of Solid-State Circuits, 41(12), 2669–2680. doi:10.1109/JSSC.2006.884231.

    Article  Google Scholar 

  8. El-Chammas, M., & Murmann, B. (2011). A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration. IEEE Journal of Solid-State Circuits, 46(4), 838–847. doi:10.1109/JSSC.2011.2108125.

    Article  Google Scholar 

  9. Figueiredo, P., Cardoso, P., Lopes, A., Fachada, C., Hamanishi, N., Tanabe, K., & Vital, J. (2006). A 90 nm CMOS 1.2 V 6b 1 Gs/s two-step subranging ADC. In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2006 (ISSCC 2006) (pp. 2320–2329). doi:10.1109/ISSCC.2006.1696295.

  10. Figueiredo, P. M. (2012). Comparator metastability in the presence of noise. IEEE Transactions on Circuits and Systems I: Regular Papers, 60, 1286–1299. doi:10.1109/TCSI.2012.2221195.

    Article  MathSciNet  Google Scholar 

  11. Fredenburg, J. A., & Flynn, M. P. (2012). Statistical analysis of ENOB and yield in binary weighted ADCs and DACS with random element mismatch. IEEE Transactions on Circuits and Systems I: Regular Papers, 59, 1396–1408.

    Article  MathSciNet  Google Scholar 

  12. Ginsburg, B. P., & Chandrakasan, A. P. (2007). 500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC. IEEE Journal of Solid-State Circuits, 42(4), 739–747. doi:10.1109/JSSC.2007.892169.

    Article  Google Scholar 

  13. Haftbaradaran, A., & Martin, K. (2008). A background sample-time error calibration technique using random data for wide-band high-resolution time-interleaved ADCs. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(3), 234–238. doi:10.1109/TCSII.2008.918970.

    Article  Google Scholar 

  14. Huang, C. C., Wang, C. Y., & Wu, J. T. (2011). A CMOS 6-bit 16-GS/s time-interleaved ADC using digital background calibration techniques. IEEE Journal of Solid-State Circuits, 46(4), 848–858. doi:10.1109/JSSC.2011.2109511.

    Article  Google Scholar 

  15. Texas Instruments. (2008). LVDS owner’s manual (4th ed.). http://www.ti.com/lit/ml/snla187/snla187.pdf.

  16. Johnson, H. W., & Graham, M. (2003). High-speed signal propagation: Advanced black magic. Upper Saddle River: Prentice Hall Professional.

    Google Scholar 

  17. Kull, L., Toifl, T., Schmatz, M., Francese, P., Menolfi, C., Brandli, M., et al. (2013). A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm Digital SOI CMOS. IEEE Journal of Solid-State Circuits, 48(12), 3049–3058. doi:10.1109/JSSC.2013.2279571.

    Article  Google Scholar 

  18. Liu, J., & Lin, X. (2004). Equalization in high-speed communication systems. IEEE Circuits and Systems Magazine, 4(2), 4–17. doi:10.1109/MCAS.2004.1330746.

    Article  Google Scholar 

  19. Louwsma, S. M., van Tuijl, A. J. M., Vertregt, M., & Nauta, B. (2008). A 1.35 GS/s, 10 b, 175 mW time-interleaved AD converter in 0.13 μm CMOS. IEEE Journal of Solid-State Circuits, 43(4), 778–786. doi:10.1109/JSSC.2008.917427.

    Article  Google Scholar 

  20. Luna, G.C., Crivelli, D.E., Hueda, M.R., & Agazzi, O.E. (2006). Compensation of track and hold frequency response mismatches in interleaved analog to digital converters for high-speed communications. In Proceedingsof the IEEE International Symposium on Circuits and Systems, 2006 (ISCAS 2006) (pp. 4, 1634). doi:10.1109/ISCAS.2006.1692914.

  21. Mangelsdorf, C. (1990). A 400-MHz input flash converter with error correction. IEEE Journal of Solid-State Circuits, 25(1), 184–191. doi:10.1109/4.50302.

    Article  Google Scholar 

  22. Montanaro, J., Witek, R., Anne, K., Black, A., Cooper, E., Dobberpuhl, D., et al. (1996). A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor. IEEE Journal of Solid-State Circuits, 31(11), 1703–1714. doi:10.1109/JSSC.1996.542315.

    Article  Google Scholar 

  23. Murmann, B. (2014). ADC performance survey 1997–2014. URL:http://web.stanford.edu/murmann/adcsurvey.html

  24. Nazemi, A., Grace, C., Lewyn, L., Kobeissy, B., Agazzi, O., Voois, P., Abidin, C., Eaton, G., Kargar, M., Marquez, C., Ramprasad, S., Bollo, F., Posse, V., Wang, S., & Asmanis, G. (2008). A 10.3 Gs/s 6bit (5.1 ENOB at Nyquist) time-interleaved/pipelined ADC using open-loop amplifiers and digital calibration in 90 nm CMOS. In IEEE Symposium on VLSI Circuits, 2008 (pp. 18–19). doi:10.1109/VLSIC.2008.4585935.

  25. Park, W., & Lee, S.C. (2010). Design of LVDS driver based CMOS transmitter for a high speed serial link. In 2010 International Conference On Electronics and Information Engineering (ICEIE) (vol. 1, pp. V1-300–V1-302). doi:10.1109/ICEIE.2010.5559870.

  26. Razavi, B. (2012) Problem of timing mismatch in interleaved ADCs. In 2012 IEEE Custom Integrated Circuits Conference (CICC) (pp. 1–8). doi:10.1109/CICC.2012.6330655.

  27. Razavi, B. (2013). Design considerations for interleaved ADCs. IEEE Journal of Solid-State Circuits, 48(8), 1806–1817. doi:10.1109/JSSC.2013.2258814.

    Article  Google Scholar 

  28. Reyes, B., Gopinathan, V., Mandolesi, P., & Hueda, M. (2012). Joint sampling-time error and channel skew calibration of time-interleaved ADC in multichannel fiber optic receivers. In 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2981–2984). doi:10.1109/ISCAS.2012.6271944.

  29. Reyes, B., Paulina, G., Tealdi, L., Labat, E., Sanchez, R., Mandolesi, P., & Hueda, M. (2014). A 1.6 Gb/s CMOS LVDS transmitter with a programmable pre-emphasis system. In 2014 IEEE 5th Latin American Symposium on Circuits and Systems (LASCAS) (pp. 1–4). doi:10.1109/LASCAS.2014.6820268.

  30. Schvan, P., Bach, J., Fait, C., Flemke, P., Gibbins, R., Greshishchev, Y., Ben-Hamida, N., Pollex, D., Sitch, J., Wang, S.C., & Wolczanski, J. (2008). A 24 Gs/s 6b ADC in 90 nm CMOS. In IEEE International Solid-State Circuits Conference, 2008 (ISSCC 2008), Digest of Technical Papers (pp. 544–634). doi:10.1109/ISSCC.2008.4523298.

  31. Singh, U., & Green, M. (2002). Dynamics of high-frequency CMOS dividers. In IEEE International Symposium on Circuits and Systems, 2002 (ISCAS 2002) (vol. 5, pp. V-421–V-424). doi:10.1109/ISCAS.2002.1010730.

  32. Sonna, P., & Carrer, H. (2009). Broadband programmable equalizer and limiting amplifier for an XFI interface in 45 nm CMOS. In Argentine School of Micro-Nanoelectronics, Technology and Applications, 2009 (EAMTA 2009) (pp. 77–80).

  33. Wu, J. T., & Wooley, B. (1988). A 100-MHz pipelined CMOS comparator. IEEE Journal of Solid-State Circuits, 23(6), 1379–1385. doi:10.1109/4.90034.

    Article  Google Scholar 

  34. Zojer, B., Petschacher, R., & Luschnig, W. (1985). A 6-bit/200-MHz full Nyquist A/D converter. IEEE Journal on Solid-State Circuits, 20, 780–786. (ISSN 0018–9200).

    Article  Google Scholar 

  35. Zongxiong, Y., Xiaohua, L., Huihua, L., Lei, L., & Wanting, Z. (2011). LVDS driver design for high speed serial link in 0.13 μm CMOS technology. In 2011 International Conference on Computational Problem-Solving (ICCP) (pp. 145–148). doi: 10.1109/ICCPS.2011.6092214.

  36. Zwillich, V., Wollitzer, M., Wirschem, T., Menzel, W., & Leier, H. (2007). Signal integrity analysis of a 1.5 Gbit/s LVDS video link. In IEEE International Symposium on Electromagnetic Compatibility, 2007 (EMC 2007) (pp. 1–6). doi: 10.1109/ISEMC.2007.58.

Download references

Acknowledgments

The authors would like to thank MOSIS for fabricating their design through the MEP research program. This paper has been supported in part by Fundación Fulgor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamín T. Reyes.

Appendix: Metastability analisys in SAR ADCs

Appendix: Metastability analisys in SAR ADCs

The metastability has been widely studied in the past literature (e.g., see [10, 21, 34]). The probability of a metastable state in a comparator is given by [10, 34]

$$\begin{aligned} P_ c \cong \dfrac{2 V_{logic} e^{(-T_ {reg} /\tau })}{A_ {Pre} V_ {FS }} \end{aligned}$$
(1)

where \(V _{logic}\) is the power voltage used in the comparator, \(T _{reg}\) is the time available for latch regeneration, \(\tau\) is the time constant at the regeneration latch output (\(\tau \approx g_m /C\)), \(A _{Pre}\) is the comparator pre-amplifier gain, and \(V _{FS}\) is the maximum differential swing at the comparator inputs.

For a conventional N-bit SAR-ADC, the probability of a metastable state (or conversion error rate) in a complete conversion cycle can be estimated considering that \(V_ {FS}\) is reduced by half after each subcycle. Then, the probability of a metastable event after N subcycles results in

$$\begin{aligned} P_ M & = & {} 2^0 P_ c + \cdots + 2^ {N-1} P_ {c} , \end{aligned}$$
(2)
$$\begin{aligned}\,= \,& {} (2^ N -1)P_ c . \end{aligned}$$
(3)

Assuming that \(2^N \gg 1\), we get

$$\begin{aligned} P_ M \approx 2^ N P_ c = 2^ N \alpha e^{(-T_ {reg} /\tau )}, \end{aligned}$$
(4)

where \(\alpha = (2 V_ {logic} )/({A_ {Pre} V_ {FS }})\). Note that the conversion error rate (4) is similar to the one achieved by a Flash ADC as deduced in [10]. In order to obtain a low error conversion rate, the ratio \((T_ {reg} /\tau )\) should be maximized. Since \(\tau\) is a constant constrained by the technology process, note that the maximum value of \(T_ {reg}\) shall be determined by the desired conversion error rate, that is,

$$\begin{aligned} T_{reg} = \tau \left[ -ln\left( P_{M} \right) + ln \left( 2^{N} \alpha \right) \right] . \end{aligned}$$
(5)

For a given value of \(P_M\), the sampling period of a synchronous SAR (S-SAR) is

$$\begin{aligned} T_{S-SAR} \approx T_ t + N(T_ {reg} +T_ {Logic} +T_ {{DAC}{set}} ), \end{aligned}$$
(6)

where \(T_{t}\) is the DAC tracking time, \(T_{Logic}\) is the clock to DAC switch propagation delay, and \(T_ {{DAC}_{set}}\) is the DAC settling time. On the other hand, for an asynchronous SAR (A-SAR) topology, the minimum sampling period is given by

$$\begin{aligned} T_{A-SAR} \approx T_{t} + T_{reg} + M\tau + N(T_{C2DAC}+T_{{DAC}{set}}), \end{aligned}$$
(7)

where \(T_{reg}\) is the extra time considered for a metastable state resolution and \(T_{C2DAC}\) is the propagation delay from ready signal to DAC switch; term \(M\tau\) is the total regeneration time required for all the asynchronous SAR approximation cycles (without considering a metastable state) where M is given by [7]:

$$\begin{aligned} M \approx N^2 ln(2) - (N/2)(N-1)ln(2) \end{aligned}$$
(8)

Parameters \(\tau\), \(\alpha\), \(T_{DAC_{set}}\), \(T_{t}\), and \(T_{C2DAC}\) have been derived from Spice simulations results for 130 \(\upmu\)m CMOS technology. Finally, curves in Fig. 4 are easily derived from (5), (6), and (7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, B.T., Paulina, G., Sanchez, R. et al. A 2GS/s 6-bit CMOS time-interleaved ADC for analysis of mixed-signal calibration techniques. Analog Integr Circ Sig Process 85, 3–16 (2015). https://doi.org/10.1007/s10470-015-0578-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0578-z

Keywords

Navigation