Skip to main content
Log in

From Hilbert’s program to a logic tool box

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In this paper I discuss what, according to my long experience, every computer scientists should know from logic. We concentrate on issues of modeling, interpretability and levels of abstraction. We discuss what the minimal toolbox of logic tools should look like for a computer scientist who is involved in designing and analyzing reliable systems. We shall conclude that many classical topics dear to logicians are less important than usually presented, and that less known ideas from logic may be more useful for the working computer scientist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S.: Sequentiality vs. concurrency in games and logic. Math. Struct. Comput. Sci. 13(4), 531–565 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barwise, J., Feferman, S. (eds.): Model-theoretic Logics. Perspectives in Mathematical Logic. Springer, New York (1985)

    Google Scholar 

  3. Blass, A., Gurevich, Y.: Why sets? In: Avron, A., Dershowitz, N., Rabinowich, A. (eds.) Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, Lecture Notes in Computer Science, vol. 4800, pp. 179–198. Springer, New York (2008)

    Google Scholar 

  4. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, New York (1997)

    MATH  Google Scholar 

  5. Boolos, G.: The consistency of Frege’s “foundations of arithmetic”. In: Logic, Logic, Logic, pp. 182–201. Harvard University Press, Cambridge (1998)

    Google Scholar 

  6. Boolos, G.: Logic, Logic, Logic. Harvard University Press, Cambridge (1998)

    Google Scholar 

  7. Boolos, G.: On the proof of Frege’s theorem. In: Logic, Logic, Logic, pp. 275–90. Harvard University Press, Cambridge (1998)

    Google Scholar 

  8. Bornat, R.: Proof and disproof in formal logic. Number 2 in Oxford Texts in Logic. Oxford University Press, Oxford (2005)

    Google Scholar 

  9. Burgess, J.P.: Fixing Frege. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  10. Buss, S. (ed.): Handbook of Proof Theory. Studies in Logic and the Foundations of Mathematics, vol. 137. Elsevier, Amsterdam (1998)

    Google Scholar 

  11. Devlin, K.: The Joy of Sets: Fundamentals of Contemporary Set Theory. Springer, New York (1993)

    MATH  Google Scholar 

  12. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathematical Logic. Springer, New York (1995)

    Google Scholar 

  13. Feferman, S.: The Number Systems: Foundations of Algebra and Analysis. Addison-Wesley, Reading (1964)

    MATH  Google Scholar 

  14. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT, Cambridge (1995)

    MATH  Google Scholar 

  15. Fine, K.: The Limits of Abstraction. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  16. Girard, J.-Y.: Locus solum: From the rules of logic to the logic of rules. Math. Struct. Comput. Sci. 11.3, 301–506 (2001)

    MathSciNet  Google Scholar 

  17. Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y., Weinstein, S.: Finite Model Theory and its Applications. Springer, New York (2007)

    MATH  Google Scholar 

  18. Glikson, A., Makowsky, J.A.: NCE graph grammars and clique-width. In: Bodlaender, H.L. (ed.) Proceedings of the 29th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2003), Elspeet (The Netherlands), Lecture Notes in Computer Science, vol. 2880, pp. 237–248. Springer, New York (2003)

    Google Scholar 

  19. Godement, R.: Cour d’Algèbre. Hermann, Paris (1966)

    Google Scholar 

  20. Gurevich, Y.: Logic and the challenge of computer science. In: Börger, E. (ed.) Trends in Theoretical Computer Science, Principles of Computer Science Series, chapter 1. Computer Science, Rockville (1988)

    Google Scholar 

  21. Hilbert, D., Ackermann, W.: Grundzuge der Theoretischen Logik. Springer, New York (1928)

    Google Scholar 

  22. Hilbert, D., Ackermann, W.: Grundzuge der Theoretischen Logik, 3rd edn. Springer, New York (1949)

    Google Scholar 

  23. Hilbert, D., Ackermann, W.: Principles of Mathematical Logic. Chelsea, New York (1950)

    MATH  Google Scholar 

  24. Halmos, P.: Naive Set Theory. Van Nostrand, New York (1960)

    MATH  Google Scholar 

  25. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for pcf: I, ii, and iii. Inf. Comput. 163.2, 285–408 (2000)

    Article  MathSciNet  Google Scholar 

  26. Jech, T.: Set Theory. Academic, New York (1978)

    Google Scholar 

  27. Kennedy, H.C.: What Russel learned from Peano. Notre Dame J. Form. Log. 14.3, 367–372 (1973)

    Article  Google Scholar 

  28. Landau, E.: Die Grundlagen der Analysis. American Mathematical Society, Providence (1999)

    Google Scholar 

  29. Levy, A.: Basic Set Theory. Springer, New York (1979)

    MATH  Google Scholar 

  30. Libkin, L.: Elements of Finite Model Theory. Springer, New York (2004)

    MATH  Google Scholar 

  31. Maddy, P.: Realisms in Mathematics. Oxford University Press, Oxford (1990)

    Google Scholar 

  32. Maddy, P.: Naturalisms in Mathematics. Oxford University Press, Oxford (1998)

    Google Scholar 

  33. Makowsky, J.A.: On some conjectures connected with complete sentences. Fundam. Math. 81, 193–202 (1974)

    MATH  MathSciNet  Google Scholar 

  34. Makowsky, J.A.: Model theoretic issues in theoretical computer science, part I: relational databases and abstract data types. In: Lolli, G., et al. (eds.) Logic Colloquium ’82, Studies in Logic, pp. 303–343. North Holland, Amsterdam (1984)

    Google Scholar 

  35. Makowsky, J.A.: Abstract embedding relations. In: Barwise, J., Feferman, S. (eds.) Model-Theoretic Logics, Perspectives in Mathematical Logic, chapter 20. Springer, New York (1985)

    Google Scholar 

  36. Makowsky, J.A.: Compactness, embeddings and definability. In: Barwise, J., Feferman, S. (eds.) Model-Theoretic Logics, Perspectives in Mathematical Logic, chapter 18. Springer, New York (1985)

    Google Scholar 

  37. Makowsky, J.A.: Model theory and computer science: an appetizer. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. 1, chapter I.6. Oxford University Press, Oxford (1992)

    Google Scholar 

  38. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl. Logic 126.1–3, 159–213 (2004)

    Article  MathSciNet  Google Scholar 

  39. Makowsky, J.A.: From a zoo to a zoology: descriptive complexity for graph polynomials. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) Logical Approaches to Computational Barriers, Second Conference on Computability in Europe, CiE 2006, Swansea, UK, July 2006, Lecture Notes in Computer Science, vol. 3988, pp. 330–341. Springer, New York (2006)

    Google Scholar 

  40. Makowsky, J.A., Mundici, D.: Abstract equivalence relations. In: Barwise, J., Feferman, S. (eds.) Model-Theoretic Logics, Perspectives in Mathematical Logic, chapter 19. Springer, New York (1985)

    Google Scholar 

  41. Moschovakis, Y.: Notes on Set Theory. Springer, New York (1994)

    MATH  Google Scholar 

  42. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer, New York (1995)

    Google Scholar 

  43. Papadimitriou, C.: Computational Complexity. Addison Wesley, Reading (1994)

    MATH  Google Scholar 

  44. Rossman, B.: Homomorphims preservation theorems. J. ACM 55.3, 1–54 (2008)

    Article  MathSciNet  Google Scholar 

  45. Scholz, H.: Problem # 1: ein ungelöstes problem in der symbolischen logik. J. Symb. Log. 17, 160 (1952)

    Article  Google Scholar 

  46. Schwartz, L.: Cour d’Analyse. Hermann, Paris (1967)

    Google Scholar 

  47. Shapiro, S.: Thinking about Mathematics. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  48. Shoenfield, J.: Mathematical Logic. Addison-Wesley Series in Logic. Addison-Wesley, Reading (1967)

    Google Scholar 

  49. Wilder, R.L.: Mathematics as a Cultural System. Pergamon, New York (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Makowsky.

Additional information

For Witek Marek, first mentor, then colleague and true friend, on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makowsky, J.A. From Hilbert’s program to a logic tool box. Ann Math Artif Intell 53, 225–250 (2008). https://doi.org/10.1007/s10472-009-9115-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-009-9115-z

Keywords

Mathematics Subject Classifications (2000)

Navigation