Skip to main content
Log in

Classifying the valence of autobiographical memories from fMRI data

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We show that fMRI analysis using machine learning tools are sufficient to distinguish valence (i.e., positive or negative) of freely retrieved autobiographical memories in a cross-participant setting. Our methodology uses feature selection (ReliefF) in combination with boosting methods, both applied directly to data represented in voxel space. In previous work using the same data set, Nawa and Ando showed that whole-brain based classification could achieve above-chance classification accuracy only when both training and testing data came from the same individual. In a cross-participant setting, classification results were not statistically significant. Additionally, on average the classification accuracy obtained when using ReliefF is substantially higher than previous results - 81% for the within-participant classification, and 62% for the cross-participant classification. Furthermore, since features are defined in voxel space, it is possible to show brain maps indicating the regions of that are most relevant in determining the results of the classification. Interestingly, the voxels that were selected using the proposed computational pipeline seem to be consistent with current neurophysiological theories regarding the brain regions actively involved in autobiographical memory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, C.T., Little, J.C.: A comparison of involuntary autobiographical memory retrievals. Appl. Cogn. Psychol. 20(9), 1167–1179 (Dec. 2006). https://doi.org/10.1002/acp.1264

    Article  Google Scholar 

  2. Greenberg, D.L., Rice, H.J., Cooper, J.J., Cabeza, R., Rubin, D.C., LaBar, K.S.: Co-activation of the amygdala, hippocampus and inferior frontal gyrus during autobiographical memory retrieval. Neuropsychologia. 43(5), 659–674 (Jan. 2005). https://doi.org/10.1016/j.neuropsychologia.2004.09.002

    Article  Google Scholar 

  3. T. Bitan, A. Frid, H. Hazan, L. M. Manevitz, H. Shalelashvili, and Y. Weiss, “Classification from Generation: Recognizing Deep Grammatical Information During Reading from Rapid Event-Related fMRI,” presented at the IEEE World Congress on Computational Intelligence (IEEE WCCI 2016), Vancouver, Canada, 2016

  4. A. Frid, H. Hazan, E. Koilis, L. M. Manevitz, and G. Star, “Machine Learning Techniques and The Existence of Variant Processes in Humans Declarative Memory,” presented at the The 7th International Joint Conference on Computational Intelligence, Lisbon, Portugal, 2015

  5. Frid, A., Hazan, H., Koilis, E., Manevitz, L.M., Merhav, M., Star, G.: The existence of two variant processes in human declarative memory: evidence using machine learning classification techniques in retrieval tasks. In: Nguyen, N.T., Kowalczyk, R., Filipe, J. (eds.) Transactions on Computational Collective Intelligence XXIV, pp. 117–133. Berlin Heidelberg, Springer (2016)

    Chapter  Google Scholar 

  6. Atir-Sharon, T., Gilboa, A., Hazan, H., Koilis, E., Manevitz, L.M.: Decoding the formation of new semantics: MVPA investigation of rapid neocortical plasticity during associative encoding through fast mapping. Neural Plast. 2015, 1–17 (2015). https://doi.org/10.1155/2015/804385

    Article  Google Scholar 

  7. Cabeza, R., Jacques, P.S.: Functional neuroimaging of autobiographical memory. Trends Cogn. Sci. 11(5), 219–227 (2007). https://doi.org/10.1016/j.tics.2007.02.005

    Article  Google Scholar 

  8. Gilboa, A.: Autobiographical and episodic memory—one and the same? Neuropsychologia. 42(10), 1336–1349 (2004). https://doi.org/10.1016/j.neuropsychologia.2004.02.014

    Article  Google Scholar 

  9. Maguire, E.A.: Neuroimaging studies of autobiographical event memory. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 356(1413), 1441–1451 (2001). https://doi.org/10.1098/rstb.2001.0944

    Article  Google Scholar 

  10. Svoboda, E., McKinnon, M.C., Levine, B.: The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia. 44(12), 2189–2208 (Jan. 2006). https://doi.org/10.1016/j.neuropsychologia.2006.05.023

    Article  Google Scholar 

  11. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980). https://doi.org/10.1037/h0077714

    Article  Google Scholar 

  12. Buchanan, T.W.: Retrieval of emotional memories. Psychol. Bull. 133(5), 761–779 (2007). https://doi.org/10.1037/0033-2909.133.5.761

    Article  Google Scholar 

  13. Markowitsch, H.J., Vandekerckhove, M.M.P., Lanfermann, H., Russ, M.O.: Engagement of lateral and medial prefrontal areas in the ecphory of sad and happy autobiographical memories. Cortex J. Devoted Study Nerv. Syst. Behav. 39(4–5), 643–665 (2003)

    Article  Google Scholar 

  14. Nawa, N.E., Ando, H.: Effective connectivity within the ventromedial prefrontal cortex-hippocampus-amygdala network during the elaboration of emotional autobiographical memories. NeuroImage. 189, 316–328 (2019). https://doi.org/10.1016/j.neuroimage.2019.01.042

    Article  Google Scholar 

  15. Nawa, N.E., Ando, H.: Classification of Self-Driven Mental Tasks from Whole-Brain Activity Patterns. PLoS ONE. 9(5), e97296 (2014). https://doi.org/10.1371/journal.pone.0097296

    Article  Google Scholar 

  16. Bellman, R.E.: Adaptive Control Processes: a Guided Tour. Princeton University Press, Princeton (1961)

    Book  Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  18. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., Raedt, L.D. (eds.) Machine Learning: ECML-94, pp. 171–182. Berlin Heidelberg, Springer (1994)

    Chapter  Google Scholar 

  19. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory. 13(1), 21–27 (Jan. 1967). https://doi.org/10.1109/TIT.1967.1053964

    Article  MATH  Google Scholar 

  20. Kononenko, I., Šimec, E., Robnik-Šikonja, M.: Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 7(1), 39–55 (Jan. 1997). https://doi.org/10.1023/A:1008280620621

    Article  Google Scholar 

  21. Urbanowicz, R.J., Meeker, M., La Cava, W., Olson, R.S., Moore, J.H.: Relief-based feature selection: introduction and review. J. Biomed. Inform. 85, 189–203 (Sep. 2018). https://doi.org/10.1016/j.jbi.2018.07.014

    Article  Google Scholar 

  22. H. Shalelashvili et al., “Recognizing deep grammatical information during reading from event related fMRI,” in 2014 IEEE 28th Convention of Electrical Electronics Engineers in Israel (IEEEI), Dec. 2014, pp. 1–4, doi: https://doi.org/10.1109/EEEI.2014.7005833

  23. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (Aug. 1997). https://doi.org/10.1006/jcss.1997.1504

    Article  MathSciNet  MATH  Google Scholar 

  24. Freund, Y., Schapire, E.R.E.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14(5), 771–780 (Sep. 1999)

    Google Scholar 

  25. Iba, W., Langley, P.: Induction of one-level decision trees. In: Machine Learning Proceedings 1992, pp. 233–240. Morgan Kaufmann, San Francisco (1992)

    Chapter  Google Scholar 

  26. Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” in Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, San Francisco, CA, USA, 1996, pp. 148–156, Accessed: Jan. 07, 2019. [Online]. Available: http://dl.acm.org/citation.cfm?id=3091696.3091715

  27. Boehm, O., Hardoon, D.R., Manevitz, L.M.: Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms. Int. J. Mach. Learn. Cybern. 2(3), 125–134 (Jul. 2011). https://doi.org/10.1007/s13042-011-0030-3

    Article  Google Scholar 

  28. Ullman, M.T.: Contributions of memory circuits to language: the declarative/procedural model. Cognition. 92(1), 231–270 (2004). https://doi.org/10.1016/j.cognition.2003.10.008

    Article  Google Scholar 

  29. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201–221 (1994). https://doi.org/10.1007/BF00993277

    Article  Google Scholar 

  30. Neilsen, T.B., Transtrum, M.K., Van Komen, D.F., Knobles, D.P.: Optimal experimental design for machine learning using the fisher information matrix. J. Acoust. Soc. Am. 144(3), 1730–1730 (2018). https://doi.org/10.1121/1.5067675

    Article  Google Scholar 

  31. G. F. Cooper and C. Yoo, “Causal discovery from a mixture of experimental and observational data,” in Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, Stockholm, Sweden, Jul. 1999, pp. 116–125, Accessed: Jun. 25, 2020. [Online]

Download references

Acknowledgements

The CiNet Research Institute hosted LM (twice) and AF (once) to work with NEN on this work. We thank its staff and especially Director Takahisa Taguchi for their support and encouragement of this work. This work was performed under an MOU between CiNet and the University of Haifa. Some of the computations were performed under an equipment grant of NVIDIA corporation to the Neurocomputation Laboratory at the Cesarea Research Institute, University of Haifa. NEN was partially supported by the Japan Society for the Promotion of Science under a Grant-in-Aid for Scientific Research (JPS KAKENHI grant number JP17K00220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Frid.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frid, A., Manevitz, L.M. & Nawa, N.E. Classifying the valence of autobiographical memories from fMRI data. Ann Math Artif Intell 88, 1261–1274 (2020). https://doi.org/10.1007/s10472-020-09705-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-020-09705-3

Keywords

Navigation