Skip to main content
Log in

Analysis of the waiting time distribution for polling systems with retrials and glue periods

  • S.I.: Queueing Theory and Network Applications
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider a single-server multi-station polling system with retrials and glue periods. Just before the server arrives at a station, there is a deterministic glue period. During a glue period, arriving customers (either newly arriving customers or retrying customers) at the station stick in the queue of that station and will be served during the following service period of that station. Whereas during any other period, arriving customers at the station join the orbit of that station and will retry after an exponentially distributed time. In this paper, we derive the Laplace–Stieltjes transform of the waiting time distribution of an arbitrary customer. This transform allows us to obtain the mean and variance of the waiting time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abidini, M. A., Boxma, O. J., & Resing, J. A. C. (2016). Analysis and optimization of vacation and polling models with retrials. Performance Evaluation, 98, 52–69.

    Article  Google Scholar 

  • Abidini, M. A., Boxma, O. J., Kim, B., Kim, J., & Resing, J. A. C. (2017). Performance analysis of polling systems with retrials and glue periods. Queueing Systems, 87, 293–324.

    Article  Google Scholar 

  • Artalejo, J. R., & Gómez-Corral, A. (2008). Retrial queueing systems. Berlin: Springer.

    Book  Google Scholar 

  • Boon, M. A. A., van der Mei, R. D., & Winands, E. M. M. (2011). Applications of polling systems. Surveys in Operations Research and Management Science, 16, 67–82.

    Article  Google Scholar 

  • Borst, S. C. (1996). Polling systems. CWI TRACT.

  • Boxma, O. J., Resing, J. A. C. (2014). Vacation and polling models with retrials. In 11th European workshop on performance engineering (EPEW 2014), Florence, September 2014.

  • Falin, G. I., & Templeton, J. G. C. (1997). Retrial queues. London: Chapman & Hall.

    Book  Google Scholar 

  • Kulkarni, V. G. (1995). Modeling and analysis of stochastic systems. London: Chapman & Hall.

    Google Scholar 

  • Langaris, C. (1997). A polling model with retrial customers. Journal of the Operations Research Society of Japan, 40, 489–508.

    Article  Google Scholar 

  • Langaris, C. (1999a). Gated polling models with customers in orbit. Mathematical and Computer Modelling, 30, 171–187.

    Article  Google Scholar 

  • Langaris, C. (1999b). Markovian polling systems with mixed service disciplines and retrial customers. Top, 7, 305–322.

    Article  Google Scholar 

  • Levy, H., & Sidi, M. (1990). Polling systems: Applications, modeling, and optimization. IEEE Transactions on Communications, 38, 1750–1760.

    Article  Google Scholar 

  • Takagi, H. (1986). Analysis of Polling Systems. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Vishnevskii, V. M., & Semenova, O. V. (2006). Mathematical methods to study the polling systems. Automation and Remote Control, 67, 173–220.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers for valuable comments and suggestions, which greatly improved this paper. B. Kim’s research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2017R1A2B4012676). J. Kim’s research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03029542).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongsim Kim.

Appendix: Stability condition

Appendix: Stability condition

We define the periodicity of our polling system as follows: Let D be the set of all positive real numbers \(\delta \) such that \(\sum _{i=1}^K(g_i+S_i)\), and \(B_1,\ldots ,B_K\) have their supports in \(\delta \mathbb {Z}_+ =\{0,\delta ,2\delta ,\ldots \}\). Our polling system is aperiodic if the set D is empty; otherwise the polling system is periodic. When our polling system is periodic, i.e., when D is nonempty, it can be shown that D has a maximum. This maximum is the period of the polling system.

In the following proposition, we obtain the stability condition of the system.

Proposition 2

Let \({\varvec{N}}(t)=(N_1(t), \ldots , N_K(t))\), where \(N_i(t)\) is the number of customers in station i at time t. Suppose that \(\rho <1\). If the system is aperiodic, then \({\varvec{N}}(t)\) converges in distribution as \(t\rightarrow \infty \). If the system is periodic with period d, then \({\varvec{N}}(nd)\) converges in distribution as \(n\rightarrow \infty \).

Proposition 2 implies that if \(\rho < 1\), then \(\{\mathcal {L}({\varvec{N}}(t)): t\ge 0\}\) is tight, where \(\mathcal {L}({\varvec{N}}(t))\) is the distribution of \({\varvec{N}}(t)\).

Proof of Proposition 2

Let

$$\begin{aligned} \tau _0^L=\inf \left\{ t\ge 0: \sum _{i=1}^K N_i(t)\mathbb {E}[B_i]\le L, t \hbox { is the beginning epoch of a glue period of station } 1\right\} , \end{aligned}$$

and for \(n \ge 1\),

$$\begin{aligned} \tau _n^L=\inf \left\{ t>\tau _{n-1}^L: \sum _{i=1}^K N_i(t)\mathbb {E}[B_i]\le L, t \hbox { is the beginning epoch of a glue period of station } 1\right\} . \end{aligned}$$

First, we show that there exist positive real numbers L, C, and \(\epsilon \) such that for all \({\varvec{l}}=(l_1,\ldots ,l_K)\) with \(\sum _{i=1}^K l_i\mathbb {E}[B_i]>L\),

$$\begin{aligned}&\mathbb {E}\left[ \sum _{i=1}^K N_i(\tau _1^\infty )\mathbb {E}[B_i] \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \le (1-\epsilon )\sum _{i=1}^K l_i\mathbb {E}[B_i], \end{aligned}$$
(9)
$$\begin{aligned}&\mathbb {E}\left[ \tau _1^\infty -\tau _0^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \le C \sum _{i=1}^K l_i\mathbb {E}[B_i], \end{aligned}$$
(10)

and for all \({\varvec{l}}\) with \(\sum _{i=1}^K l_i\mathbb {E}[B_i]\le L\),

$$\begin{aligned}&\mathbb {E}\left[ \sum _{i=1}^K N_i(\tau _1^\infty )\mathbb {E}[B_i] \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \le C, \end{aligned}$$
(11)
$$\begin{aligned}&\mathbb {E}\left[ \tau _1^\infty -\tau _0^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \le C. \end{aligned}$$
(12)

Note that \(N_i(\tau _1^\infty ) = N_i(\tau _0^\infty )-\mathcal {D}_i+\mathcal {A}_i\), where \(\mathcal {D}_i\) is the number of service completions at station i during \((\tau _0^\infty , \tau _1^\infty )\), and \(\mathcal {A}_i\) is the number of arrivals at station i during \((\tau _0^\infty , \tau _1^\infty )\). Thus

$$\begin{aligned}&{\mathbb {E}\left[ {\varvec{N}}(\tau _1^\infty ) \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] }\\&\quad = {\varvec{l}}-\mathbb {E}\left[ (\mathcal {D}_1, \ldots ,\mathcal {D}_K) \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] +\mathbb {E}\left[ (\mathcal {A}_1, \ldots ,\mathcal {A}_K) \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] . \end{aligned}$$

Since

$$\begin{aligned} \mathbb {E}\left[ (\mathcal {A}_1, \ldots ,\mathcal {A}_K) \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] =\sum _{i=1}^K(g_i+\mathbb {E}[S_i]+\mathbb {E} [\mathcal {D}_i|{\varvec{N}}(\tau _0^\infty )={\varvec{l}}]\mathbb {E}[B_i]){\varvec{\lambda }}, \end{aligned}$$

we have

$$\begin{aligned}&\mathbb {E}\left[ \sum _{i=1}^K N_i(\tau _1^\infty )\mathbb {E}[B_i] \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \\&\quad = \sum _{i=1}^K l_i\mathbb {E}[B_i]-\mathbb {E}\left[ \sum _{i=1}^K \mathcal {D}_i\mathbb {E}[B_i] \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \\&\qquad +\, \sum _{i=1}^K(g_i+\mathbb {E}[S_i] +\,\mathbb {E}[\mathcal {D}_i|{\varvec{N}}(\tau _0^\infty )={\varvec{l}}]\mathbb {E}[B_i]) \sum _{i=1}^K \lambda _i \mathbb {E}[B_i] \\&\quad = \rho \sum _{i=1}^K(g_i+\mathbb {E}[S_i]) + \sum _{i=1}^K l_i\mathbb {E}[B_i] -(1-\rho )\mathbb {E}\left[ \sum _{i=1}^K \mathcal {D}_i\mathbb {E}[B_i] \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] . \end{aligned}$$

Note that

$$\begin{aligned} \mathbb {E}[\mathcal {D}_i|{\varvec{N}}(\tau _0^\infty )={\varvec{l}}] \ge l_i(1-e^{-\nu _i g_i}) \ge \min _{1\le j\le K}(1-e^{-\nu _j g_j}) l_i. \end{aligned}$$

Hence

$$\begin{aligned}&{\mathbb {E}\left[ \sum _{i=1}^K N_i(\tau _1^\infty )\mathbb {E}[B_i] \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] } \nonumber \\&\quad \le \rho \sum _{i=1}^K (g_i+\mathbb {E}[S_i])+\left( 1-(1-\rho )\min _{1\le j\le K}(1-e^{-\nu _j g_j})\right) \sum _{i=1}^K l_i \mathbb {E}[B_i] \nonumber \\&\quad = \rho \sum _{i=1}^K (g_i+\mathbb {E}[S_i])+(1-2\epsilon ) \sum _{i=1}^K l_i \mathbb {E}[B_i], \end{aligned}$$
(13)

where \(\epsilon = \frac{1-\rho }{2} \min _{1\le j\le K}(1-e^{-\nu _j g_j})\). Therefore,

$$\begin{aligned} \limsup _{\sum _{i=1}^K l_i\mathbb {E}[B_i] \rightarrow \infty }\frac{\mathbb {E}\left[ \sum _{i=1}^K N_i(\tau _1^\infty )\mathbb {E}[B_i] \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] }{\sum _{i=1}^K l_i\mathbb {E}[B_i]} \le 1-2\epsilon , \end{aligned}$$

and so there exists a positive number L such that

$$\begin{aligned} \frac{\mathbb {E}\left[ \sum _{i=1}^K N_i(\tau _1^\infty )\mathbb {E}[B_i] \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] }{\sum _{i=1}^K l_i\mathbb {E}[B_i]} \le 1-\epsilon \end{aligned}$$

for all \({\varvec{l}}\) with \(\sum _{i=1}^K l_i\mathbb {E}[B_i]> L\). This proves (9). We have from (13) that there exists C satisfying (11). To prove (10) and (12), we note that \(\tau _1^\infty -\tau _0^\infty \) is stochastically less than the sum of \(\sum _{i=1}^K (g_i+S_i)\), and the busy period with initial workload \(W_0\) in the standard M / G / 1 queue (where \(W_0\) has the same distribution as the workload at \(\tau ^\infty _0\) in our polling system). Thus

$$\begin{aligned} \mathbb {E}\left[ \tau _1^\infty -\tau _0^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \le \frac{\sum _{i=1}^K l_i\mathbb {E}[B_i]}{1-\rho }+\sum _{i=1}^K (g_i+\mathbb {E}[S_i]). \end{aligned}$$

This proves that there exists C satisfying (10) and (12).

Next, we prove

$$\begin{aligned} \mathbb {E}[\tau _{1}^L-\tau _0^L \vert {\varvec{N}}(\tau _0^L)={\varvec{l}}]<\infty \end{aligned}$$

for all \({\varvec{l}}\) with \(\sum _{i=1}^K l_i\mathbb {E}[B_i]\le L\). We can see from (9) that for \({\varvec{l}}\) with \(\sum _{i=1}^K l_i\mathbb {E}[B_i]>L\),

$$\begin{aligned}&\mathbb {E}\left[ \sum _{i=1}^K N_i(\tau _n^\infty )\mathbb {E}[B_i] \mathbb {1}_{\{\tau _n^\infty <\tau _0^L\}} \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \le (1-\epsilon )^n\sum _{i=1}^K l_i\mathbb {E}[B_i]. \end{aligned}$$
(14)

Also, for \({\varvec{l}}\) with \(\sum _{i=1}^K l_i\mathbb {E}[B_i]>L\), by (10),

$$\begin{aligned}&\mathbb {E}\left[ (\tau _{n+1}^\infty -\tau _n^\infty )\mathbb {1}_{\{\tau _n^\infty<\tau _0^L\}} \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \nonumber \\&\quad = \sum _{{\varvec{l}}': \sum _{i=1}^K l_i'\mathbb {E}[B_i]>L} \mathbb {E}\left[ \tau _{n+1}^\infty -\tau _n^\infty \vert {\varvec{N}}(\tau _n^\infty )={\varvec{l}}',\tau _n^\infty<\tau _0^L\right] \nonumber \\&\qquad \times \mathbb {P}({\varvec{N}}(\tau _n^\infty )={\varvec{l}}',\tau _n^\infty<\tau _0^L\vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}) \nonumber \\&\quad \le \sum _{{\varvec{l}}': \sum _{i=1}^K l_i'\mathbb {E}[B_i]>L} C\sum _{i=1}^K l_i'\mathbb {E}[B_i] \mathbb {P}({\varvec{N}}(\tau _n^\infty )={\varvec{l}}',\tau _n^\infty<\tau _0^L\vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}) \nonumber \\&\quad = C \mathbb {E}\left[ \sum _{i=1}^K N_i(\tau _n^\infty )\mathbb {E}[B_i] \mathbb {1}_{\{\tau _n^\infty <\tau _0^L\}} \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] . \end{aligned}$$

Thus, by (14),

$$\begin{aligned} \mathbb {E}\left[ (\tau _{n+1}^\infty -\tau _n^\infty )\mathbb {1}_{\{\tau _n^\infty <\tau _0^L\}} \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \le C (1-\epsilon )^n\sum _{i=1}^K l_i\mathbb {E}[B_i]. \end{aligned}$$

Hence, for \({\varvec{l}}\) with \(\sum _{i=1}^K l_i\mathbb {E}[B_i]>L\),

$$\begin{aligned} \mathbb {E}\left[ \tau _0^L-\tau _0^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right]&= \mathbb {E}\left[ \sum _{n=0}^\infty (\tau _{n+1}^\infty -\tau _n^\infty )\mathbb {1}_{\{\tau _n^\infty <\tau _0^L\}} \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \nonumber \\&\le \frac{C}{\epsilon }\sum _{i=1}^K l_i\mathbb {E}[B_i]. \end{aligned}$$
(15)

Now, for \({\varvec{l}}\) with \(\sum _{i=1}^K l_i\mathbb {E}[B_i]\le L\),

$$\begin{aligned}&\mathbb {E}\left[ \tau _1^L-\tau _0^L \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \\&\quad = \mathbb {E}\left[ \tau _1^\infty -\tau _0^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \\&\qquad + \sum _{{\varvec{l}}': \sum _{i=1}^K l_i'\mathbb {E}[B_i]>L} \mathbb {P}({\varvec{N}}(\tau _1^\infty )={\varvec{l}}' \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}) \mathbb {E}\left[ \tau _1^L-\tau _1^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}},{\varvec{N}}(\tau _1^\infty )={\varvec{l}}'\right] \\&\quad = \mathbb {E}\left[ \tau _1^\infty -\tau _0^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] \\&\qquad + \sum _{{\varvec{l}}': \sum _{i=1}^K l_i'\mathbb {E}[B_i]>L} \mathbb {P}({\varvec{N}}(\tau _1^\infty )={\varvec{l}}' \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}) \mathbb {E}\left[ \tau _0^L-\tau _0^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}'\right] \\&\quad \le \mathbb {E}\left[ \tau _1^\infty -\tau _0^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] + \sum _{{\varvec{l}}': \sum _{i=1}^K l_i'\mathbb {E}[B_i]>L} \mathbb {P}({\varvec{N}}(\tau _1^\infty )={\varvec{l}}' \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}) \frac{C}{\epsilon }\sum _{i=1}^K l_i'\mathbb {E}[B_i] \\&\quad \le \mathbb {E}\left[ \tau _1^\infty -\tau _0^\infty \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] + \frac{C}{\epsilon }\mathbb {E}\left[ \sum _{i=1}^K N_i(\tau _1^\infty )\mathbb {E}[B_i] \vert {\varvec{N}}(\tau _0^\infty )={\varvec{l}}\right] , \end{aligned}$$

which is finite by (11) and (12). Here we have used (15) in the second last inequality. Therefore, we have proved \( \mathbb {E}[\tau _{1}^L-\tau _0^L \vert {\varvec{N}}(\tau _0^L)={\varvec{l}}]<\infty \) for all \({\varvec{l}}\) with \(\sum _{i=1}^K l_i\mathbb {E}[B_i]\le L\).

Note that

  • \({\varvec{N}}(t)\) is a Markov regenerative process with Markov renewal sequence \(({\varvec{N}}(\tau _n^L), \tau _n^L)\).

  • The Markov process \({\varvec{N}}(\tau _n^L)\) has a finite state space and is irreducible.

  • The semi-Markov process (SMP) corresponding to this Markov renewal sequence is positive recurrent.

Refer to Chapter 9 of Kulkarni (1995) for further details on the theory of Markov regenerative processes, Markov renewal sequences, and SMPs.

If the polling system is aperiodic, then the SMP is aperiodic. In this case \({\varvec{N}}(t)\) converges in distribution as \(t\rightarrow \infty \) (refer to Theorem 9.30 of Kulkarni 1995). If the polling system is periodic with period d, then the SMP is periodic with period d. In this case \({\varvec{N}}(nd)\) converges in distribution as \(n\rightarrow \infty \). \(\square \)

In the following proposition, we obtain the instability condition of the system.

Proposition 3

Let U(t) be the workload at time t in our polling system. If \(\rho \ge 1\), then

$$\begin{aligned} U(t) \rightarrow \infty \hbox { in distribution as } t \rightarrow \infty . \end{aligned}$$

Proposition 3 implies that if \(\rho \ge 1\), then \(\{\mathcal {L}(U(t)): t \ge 0\}\) is not tight, where \(\mathcal {L}(U(t))\) is the distribution of U(t). This also ensures that if \(\rho \ge 1\), then \(\{\mathcal {L}({\varvec{N}}(t)): t\ge 0\}\) is not tight.

Proof of Proposition 3

Let \(\tilde{U}(t)\) be the workload at time t in the standard M / G / 1 queue with arrival rate \(\lambda \) and service time distribution \(\sum _{i=1}^K \frac{\lambda _i}{\lambda }\mathbb {P}(B_i \le x)\). If \(U(0)=\tilde{U}(0)\) in distribution, then \(U(t) \ge \tilde{U}(t)\) stochastically for all \(t \ge 0\). If \(\rho \ge 1\), then \(\tilde{U}(t) \rightarrow \infty \) in distribution as \(t \rightarrow \infty \), and so \(U(t) \rightarrow \infty \) in distribution as \(t \rightarrow \infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Kim, J. Analysis of the waiting time distribution for polling systems with retrials and glue periods. Ann Oper Res 277, 197–212 (2019). https://doi.org/10.1007/s10479-018-2800-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2800-8

Keywords

Navigation