Skip to main content

Advertisement

Log in

Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The potential of Lactobacillus reuteri as a donor of antibiotic resistance genes in the human gut was investigated by studying the transferability of the tetracycline resistance gene tet(W) to faecal enterococci, bifidobacteria and lactobacilli. In a double-blind clinical study, seven subjects consumed L. reuteri ATCC 55730 harbouring a plasmid-encoded tet(W) gene (tet(W)-reuteri) and an equal number of subjects consumed L. reuteri DSM 17938 derived from the ATCC 55730 strain by the removal of two plasmids, one of which contained the tet(W) gene. Faecal samples were collected before, during and after ingestion of 5 × 108 CFU of L. reuteri per day for 14 days. Both L. reuteri strains were detectable at similar levels in faeces after 14 days of intake but neither was detected after a two-week wash-out period. After enrichment and isolation of tetracycline resistant enterococci, bifidobacteria and lactobacilli from each faecal sample, DNA was extracted and analysed for presence of tet(W)-reuteri using a real-time PCR allelic discrimination method developed in this study. No tet(W)-reuteri signal was produced from any of the DNA samples and thus gene transfer to enterococci, bifidobacteria and lactobacilli during intestinal passage of the probiotic strain was non-detectable under the conditions tested, although transfer at low frequencies or to the remaining faecal bacterial population cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37:127–137

    Article  CAS  PubMed  Google Scholar 

  • Aires J, Doucet-Populaire F, Butel MJ (2007) Tetracycline resistance mediated by tet(W), tet(M), and tet(O) genes of Bifidobacterium isolates from humans. Appl Environ Microbiol 73:2751–2754

    Article  CAS  PubMed  Google Scholar 

  • Årsköld E, Svensson M, Grage H, Roos S, Radstrom P, van Niel EW (2007) Environmental influences on exopolysaccharide formation in Lactobacillus reuteri ATCC 55730. Int J Food Microbiol 116:159–167

    Article  PubMed  CAS  Google Scholar 

  • Ballongue J (2004) Bifidobacteria and Probiotic Action. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic Acid Bacteria—Microbiological and Functional Aspects, 3rd edn. Marcel Dekker Inc, New York, pp 67–123

    Google Scholar 

  • Båth K, Roos S, Wall T, Jonsson H (2005) The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 253:75–82

    Article  PubMed  CAS  Google Scholar 

  • Beerens H (1998) Bifidobacteria as indicators of faecal contamination in meat and meat products: detection, determination of origin and comparison with Escherichia coli. Int J Food Microbiol 40:203–207

    Article  CAS  PubMed  Google Scholar 

  • Cars O, Molstad S, Melander A (2001) Variation in antibiotic use in the European Union. Lancet 357:1851–1853

    Article  CAS  PubMed  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    Article  CAS  PubMed  Google Scholar 

  • Chung TC, Axelsson L, Lindgren S, Dobrogosz WJ (1989) In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb Ecol Health Dis 2:137–144

    Article  Google Scholar 

  • Danielsen M (2002) Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid 48:98–103

    Article  CAS  PubMed  Google Scholar 

  • Delgado S, Florez AB, Mayo B (2005) Antibiotic susceptibility of Lactobacillus and Bifidobacterium species from the human gastrointestinal tract. Curr Microbiol 50:202–207

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2008) Scientific opinion of the panel on biological hazards on a request from the European food safety authority on foodborne antimicrobial resistance as a biological hazard. The EFSA J 765:1–87

    Google Scholar 

  • Egervärn M, Danielsen M, Roos S, Lindmark H, Lindgren S (2007) Antibiotic susceptibility profiles of Lactobacillus reuteri and Lactobacillus fermentum. J Food Prot 70:412–418

    PubMed  Google Scholar 

  • Egervärn M, Roos S, Lindmark H (2009) Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum. J Appl Microbiol 107(5):1658–1668

    Article  PubMed  CAS  Google Scholar 

  • Feld L, Schjorring S, Hammer K, Licht TR, Danielsen M, Krogfelt K, Wilcks A (2008) Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. J Antimicrob Chemother 61:845–852

    Article  CAS  PubMed  Google Scholar 

  • Florez AB, Ammor MS, Alvarez-Martin P, Margolles A, Mayo B (2006) Molecular analysis of tet(W) gene-mediated tetracycline resistance in dominant intestinal Bifidobacterium species from healthy humans. Appl Environ Microbiol 72:7377–7379

    Article  CAS  PubMed  Google Scholar 

  • Florez AB, Ammor MS, Mayo B, van Hoek AH, Aarts HJ, Huys G (2008) Antimicrobial susceptibility profiles of 32 type strains of Lactobacillus, Bifidobacterium, Lactococcus and Streptococcus spp. Int J Antimicrob Agents 31:484–486

    Article  CAS  PubMed  Google Scholar 

  • Flórez AB, Tosi L, Danielsen M, VW A, Bardowski J, Morelli L, Mayo B (2008) Resistance-susceptibility profiles of Lactococcus lactis and Streptococcus thermophilus strains to eight antibiotics and proposition of new cut-offs. International Journal of Probiotics and Prebiotics 3:249–256

    Google Scholar 

  • Franz CM, Holzapfel WH (2004) The Genus Enterococcus: Biotechnological and Safety Issues. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic Acid Bacteria—Microbiological and Functional Aspects, 3rd edn. Marcel Dekker, Inc, New York, pp 199–247

    Google Scholar 

  • Gevers D, Huys G, Swings J (2003) In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol Lett 225:125–130

    Article  CAS  PubMed  Google Scholar 

  • Gibson NJ (2006) The use of real-time PCR methods in DNA sequence variation analysis. Clin Chim Acta 363:32–47

    Article  CAS  PubMed  Google Scholar 

  • Hunter PR, Wilkinson DC, Catling LA, Barker GC (2008) Meta-analysis of experimental data concerning antimicrobial resistance gene transfer rates during conjugation. Appl Environ Microbiol 74:6085–6090

    Article  CAS  PubMed  Google Scholar 

  • Igimi S, Ryu CH, Park SH, Sasaki Y, Sasaki T, Kumagai S (1996) Transfer of conjugative plasmid pAM beta 1 from Lactococcus lactis to mouse intestinal bacteria. Lett Appl Microbiol 23:31–35

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR (2007) Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2–2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59:158–166

    Article  CAS  PubMed  Google Scholar 

  • Kazimierczak KA, Flint HJ, Scott KP (2006) Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. Antimicrob Agents Chemother 50:2632–2639

    Article  CAS  PubMed  Google Scholar 

  • Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Muller-Bertling S, Witte W, Goossens H (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59:900–912

    Article  CAS  PubMed  Google Scholar 

  • Korhonen J, Danielsen M, Mayo B, Egervärn M, Axelsson L, Huys G, VW A (2008) Antimicrobial susceptibility and proposed microbiological cut-off values of lactobacilli by phenotypic determination. International Journal of Probiotics and Prebiotics 3:257–268

    Google Scholar 

  • Lester CH, Frimodt-Møller N, Sørensen TL, Monnet DL, Hammerum AM (2006) In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 50:596–599

    Article  CAS  PubMed  Google Scholar 

  • Licht TR, Wilcks A (2006) Conjugative gene transfer in the gastrointestinal environment. Adv Appl Microbiol 58:77–95

    Article  CAS  PubMed  Google Scholar 

  • Mater DD, Langella P, Corthier G, Flores MJ (2008) A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J Mol Microbiol Biotechnol 14:123–127

    Article  CAS  PubMed  Google Scholar 

  • McConnell MA, Mercer AA, Tannock GW (1991) Transfer of plasmid pAMβ1 between members of the normal microflora inhabiting the murine digestive tract and modification of the plasmid in a Lactobacillus reuteri host. Microb Ecol Health Dis 4:343–355

    Article  Google Scholar 

  • Mikelsaar M, Mändar R, Sepp E, Annuk H (2004) Human Lactic Acid Microflora and Its Role in the Welfare of the Host. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic Acid Bacteria—Microbiological and Functional Aspects, 3rd edn. Marcel Dekker Inc, New York, pp 453–505

    Google Scholar 

  • Morelli L, Sarra PG, Bottazzi V (1988) In vivo transfer of pAM beta 1 from Lactobacillus reuteri to Enterococcus faecalis. J Appl Bacteriol 65:371–375

    CAS  PubMed  Google Scholar 

  • Moubareck C, Gavini F, Vaugien L, Butel MJ, Doucet-Populaire F (2005) Antimicrobial susceptibility of bifidobacteria. J Antimicrob Chemother 55:38–44

    Article  CAS  PubMed  Google Scholar 

  • Ouoba LI, Lei V, Jensen LB (2008) Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int J Food Microbiol 121:217–224

    Article  CAS  PubMed  Google Scholar 

  • Rada V (1997) Detection of Bifidobacterium species by enzymatic methods and antimicrobial susceptibility testing. Biotechnol Tech 11:909–912

    Article  CAS  Google Scholar 

  • Rosander A, Connolly E, Roos S (2008) Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730, characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl Environ Microbiol 74:6032–6040

    Article  CAS  PubMed  Google Scholar 

  • Saarela M, Maukonen J, von Wright A, Vilpponen-Salmela T, Patterson AJ, Scott KP, Hamynen H, Matto J (2007) Tetracycline susceptibility of the ingested Lactobacillus acidophilus LaCH-5 and Bifidobacterium animalis subsp. lactis Bb-12 strains during antibiotic/probiotic intervention. Int J Antimicrob Agents 29:271–280

    Article  CAS  PubMed  Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416

    Article  CAS  PubMed  Google Scholar 

  • Schlundt J, Saadbye P, Lohmann B, Jacobsen BL, Nielsen EM (1994) Conjugal transfer of plasmid DNA between Lactococcus lactis strains and distribution of transconjugants in the digestive tract of gnotobiotic rats. Microb Ecol Health Dis 7:59–69

    Article  Google Scholar 

  • Scott KP, Melville CM, Barbosa TM, Flint HJ (2000) Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. Antimicrob Agents Chemother 44:775–777

    Article  CAS  PubMed  Google Scholar 

  • Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76:115–137

    Article  CAS  PubMed  Google Scholar 

  • Valeur N, Engel P, Carbajal N, Connolly E, Ladefoged K (2004) Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol 70:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • van Hoek AH, Margolles A, Domig KJ, Korhonen J, Życka-Krzesińska J, Bardowski J, Danielsen M, Huys G, Morelli L, Aarts H (2008) Molecular assessment of erythromycin and tetracycline resistance genes in lactic acid bacteria and bifidobacteria and their relation to the phenotypic resistance. International Journal of Probiotics and Prebiotics 3:271–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Egervärn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egervärn, M., Lindmark, H., Olsson, J. et al. Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans. Antonie van Leeuwenhoek 97, 189–200 (2010). https://doi.org/10.1007/s10482-009-9401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9401-0

Keywords

Navigation