Skip to main content
Log in

Nocardia arizonensis sp. nov., obtained from human respiratory specimens

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In 2008, three clinical isolates (W9405T, W9409 and W9575) were obtained from bronchial wash or sputum specimens from patients from the state of Arizona and characterised by polyphasic analysis. All three clinical isolates 16S rRNA gene sequences were found to be 100 % identical to each other and showed the strains belong in the genus Nocardia. BLASTn searches in the GenBank database of near full-length 16S rRNA gene sequences showed the highest sequence similarities to the type strains of Nocardia takedensis (98.3 %, sequence similarity), Nocardia lijiangensis (97.4 %), Nocardia harenae (97.4 %), and Nocardia xishanensis (97.1 %). The DNA–DNA relatedness between isolate W9405T and the type strain of N. takedensis is 26.0 ± 2.4 % when measured in silico using genomic DNA sequences. The G+C content of isolate W9405T is 68.6 mol%. Chemotaxonomic analyses of the clinical isolates were consistent with their assignment to the genus Nocardia: whole cell hydrolysates contain meso-diaminopimelic acid as the diagnostic diamino acid of peptidoglycan; the whole-cell sugars are arabinose and galactose; the predominant phospholipids include diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol; MK-8-(H4) ω-cyc as the major menaquinone; mycolic acids ranging from 38 to 62 carbon atoms; and palmitic acid, tuberculostearic acid, palmitelaidic acid and oleic acid are the major fatty acids. Genus and species specific profiles were obtained following analysis by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra of the clinical isolates. All isolates were found to be intermediately resistant or resistant to minocycline and resistant to ciprofloxacin but were susceptible to amikacin, imipenem and linezolid. Our polyphasic analysis suggest the three clinical isolates obtained from patients in Arizona represent a novel species of Nocardia for which we propose the name Nocardia arizonensis, with strain W9405T (=DSM 45748T = CCUG 62754T = NBRC 108935T) as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baba T, Nishiuchi Y, Yano I (1997) Composition of mycolic acid molecular species as criterion in nocardial classification. Int J Syst Bacteriol 47:795–801

    Article  CAS  Google Scholar 

  • Berd D (1973) Laboratory identification of clinically important aerobic actinomycetes. Appl Microbiol 25:665–681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2003) Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; approved standard M24-A. CLSI, Wayne

    Google Scholar 

  • Conville PS, Witebsky FG (2007) Nocardia, Rhodococcus, Gordonia, Actinomadura, Streptomyces, and other aerobic actinomycetes. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Phaller MA (eds) Manual of clinical microbiology, 9th edn. American Society for Microbiology, Washington, pp 515–542

    Google Scholar 

  • Conville PS, Brown JM, Steigerwalt AG, Brown-Elliott BA, Witebsky FG (2008) Nocardia wallacei sp. nov., and Nocardia blacklockiae sp. nov., human pathogens and members of the “Nocardia transvalensis complex”. J Clin Microbiol 46:1178–1184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corti ME, Fioti MFV (2003) Nocardiosis: a review. Int J Infect Dis 7:243–250

    Article  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: maximum-likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Maldonado LA (2012) Genus I. Nocardia Trevisan 1889. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, the Actinobacteria, 2nd edn. Springer, New York, pp 376–419

    Chapter  Google Scholar 

  • Kämpfer P, Buczolitis S, Jäckel U, Grün-Wollny I, Busee H-J (2004) Nocardia tenerifensis sp. nov. Int J Syst Evol Microbiol 54:381–383

    Article  PubMed  Google Scholar 

  • Kimura M (1980) A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Klatte S, Kroppenstedt RM, Rainey FA (1994) Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. Syst Appl Microbiol 17:355–360

    Article  Google Scholar 

  • Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics, no. 20 SAB Technical series. Academic Press, London, pp 173–199

    Google Scholar 

  • Lasker BA, Moser BD, Brown JM (2011) Gordonia. In: Liu D (ed) Molecular detection of human bacterial pathogens. CRC Taylor & Francis Group, Boca Raton, pp 95–110

    Chapter  Google Scholar 

  • Lasker BA, Bell M, Klenk H-P, Spröer Schumann P, Brown JM (2014) Nocardia vulneris sp. nov., isolated from wounds of human patients in North America. Antonie Van Leeuwenhoek 106:543–553

    Article  PubMed  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Luo Q, Hiessl S, Steinbüchel A (2013) Functional diversity of Nocardia in metabolism. Environ Microbiol 16:29–48

    Article  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013a) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P (2013b) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minero MV, Marin M, Cercenado E, Rabadán PM, Bouza E, Muñoz P (2009) Nocardiosis at the turn of the century. Medicine 88:250–260

    Article  PubMed  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow G, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An intergrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Muñoz J, Mirelis B, Aragón LM, Gutiérrez N, Sánchez F, Español M, Esparcia O, Gurguí M, Domingo P, Coll P (2007) Clinical and microbiological features of nocardiosis 1997–2003. J Med Microbiol 56:545–550

    Article  PubMed  Google Scholar 

  • Rhuland LE, Work E, Denman RF, Hoare DS (1955) The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16

    Google Scholar 

  • Schumann P, Maier T (2014) MALDI-TOF mass spectrometry applied to classification and identification of bacteria. Methods Microbiol 41:275–306

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallace RJ Jr, Steele LC, Sumter G, Smith JM (1988) Antimicrobial susceptibility patterns of Nocardia asteroides. Antimicrob Agents Chemother 32:1776–1779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandle O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Welsh O, Vera-Cabrera L, Salinas-Carmona MC (2013) Current treatment for norcardia infections. Expert Opin Pharmacother 14:1–12

    Article  Google Scholar 

  • Weyant RS, Moss CW, Weaver RE, Hollis DG, Jordan JG, Cook EC, Daneshvar MI (1996) Identification of unusual pathogenic gram-negative and facultatively anaerobic bacteria, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Yassin AF, Rainey FA, Brzezinka H, Burghardt J, Lee HJ, Schaal KP (1995) Tsukamurella inchonensis sp. nov. Int J Syst Bacteriol 45:522–527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jean Euzéby for nomenclatural advice and Gabi Pötter and Ulrike Steiner (both DSMZ) for help in chemotaxonomic analysis and recording of MALDI-TOF mass spectra, respectively. We acknowledge the assistance of Linda Getsinger, MS, and Clarisse A. Tsang, MPH, from the Arizona Department of Health Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent A. Lasker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2015_566_MOESM1_ESM.pptx

Supplementary material 1 (PPTX 79 kb) Supplementary Fig. S1. Neighbour-joining phylogenetic tree of aligned 16S rRNA gene sequences showing the position of the three clinical isolates to validly named type strains within the genus Nocardia. Bootstrap percentages are shown based on 1000, re-sampled data sets; only values ≥50 % are shown. The tree was rooted using the sequence of Mycobacterium tuberculosis ATCC 27294T as the outgroup. Bar, 0.002 substitutions per nucleotide position

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasker, B.A., Bell, M., Klenk, HP. et al. Nocardia arizonensis sp. nov., obtained from human respiratory specimens. Antonie van Leeuwenhoek 108, 1129–1137 (2015). https://doi.org/10.1007/s10482-015-0566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0566-4

Keywords

Navigation