Skip to main content
Log in

Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Using the idea of Atanassov, we define the notion of intuitionistic Menger spaces as a netural generalizations of Menger spaces due to Menger. We also obtain a new generalized contraction mapping and utilize this contraction mapping to prove the existence theorems of solutions to differential equations in intuitionistic Menger spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menger K. Statistical metric spaces[J]. Proc Nat Acad Sci, 1942, 28: 535–537.

    Article  MATH  Google Scholar 

  2. Schweizer B, Sklar A. Statistical metric spaces[J]. Pacific J Math, 1960, 10: 314–334.

    Google Scholar 

  3. Schweizer B, Sklar A. Probabilistic metric spaces[M]. New York: North-Holland, 1983.

    Google Scholar 

  4. Schweizer B, Sklar A, Thorp E. The metrization of statistical metric spaces[J]. Pacific J Math, 1960, 10: 673–675.

    MATH  Google Scholar 

  5. Chang S S, Lee B S, Cho Y J, Chen Y Q, Kang S M, Jung J S. Generalized contraction mapping principle and differential equations in probabilistic metric spaces[J]. Proceedings of the American Mathematical Society, 1996, 124(8): 2367–2376.

    Article  MATH  Google Scholar 

  6. Hadzic O, Pap E. Fixed point theory in probabilistic metric spaces[M]. Dordrecht: Kluwer Acad Pub, 2001.

    Google Scholar 

  7. Hadzic O, Pap E, Radu V. Generalized contraction mapping principles in probabilistic metric spaces[J]. Acta Math Hungar, 2003, 101(1/2): 131–148.

    Article  MATH  Google Scholar 

  8. Mihet D. On the contraction principle in Menger and non-Archimedean Menger spaces[J]. An Univ Timişoara Ser Mat Inform, 1994, 32(2): 45–50.

    MATH  Google Scholar 

  9. Klement E P, Mesiar R, Pap E. Triangular norms[M]. Dordrecht: Kluwer Acad Pub Trends in Logic 8, 2000.

    Google Scholar 

  10. Radu V. Lectures on probabilistic analysis[M]. West University of Timisoara, 1996.

  11. Radu V. Some remarks on the probabilistic contractions on fuzzy Menger spaces[J]. Automat Comput Appl Math, 2002, 11(1): 125–131.

    Google Scholar 

  12. Kramosil O, Michalek J. Fuzzy metric and statistical metric spaces[J]. Kybernetica, 1975, 11: 326–334.

    Google Scholar 

  13. George A, Veeramani P. On some results in fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1994, 64: 395–399.

    Article  MATH  Google Scholar 

  14. Mihet D. A Banach contraction theorem in fuzzy metric spaces[J]. Fuzzy Sets and Systems, 2004, 144: 431–439.

    Article  MATH  Google Scholar 

  15. Park J H. Intuitionistic fuzzy metric spaces[J]. Chaos, Solitons and Fractals, 2004, 22: 1039–1046.

    Article  MATH  Google Scholar 

  16. Kelley J L. General topology[M]. Princeton, 1955.

  17. Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20: 87–96.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Kutukcu.

Additional information

Communicated by DING Xie-ping

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutukcu, S., Tuna, A. & Yakut, A.T. Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations. Appl Math Mech 28, 799–809 (2007). https://doi.org/10.1007/s10483-007-0610-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-007-0610-z

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation