Skip to main content
Log in

ν-twin support vector machine with Universum data for classification

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

A novel ν-twin support vector machine with Universum data (\(\mathfrak {U}_{\nu }\)-TSVM) is proposed in this paper. \(\mathfrak {U}_{\nu }\)-TSVM allows to incorporate the prior knowledge embedded in the unlabeled samples into the supervised learning. It aims to utilize these prior knowledge to improve the generalization performance. Different from the conventional \(\mathfrak {U}\)-SVM, \(\mathfrak {U}_{\nu }\)-TSVM employs two Hinge loss functions to make the Universum data lie in a nonparallel insensitive loss tube, which makes it exploit these prior knowledge more flexibly. In addition, the newly introduced parameters ν 1, ν 2 in the \(\mathfrak {U}_{\nu }\)-TSVM have better theoretical interpretation than the penalty factor c in the \(\mathfrak {U}\)-TSVM. Numerical experiments on seventeen benchmark datasets, handwritten digit recognition, and gender classification indicate that the Universum indeed contributes to improving the prediction accuracy. Moreover, our \(\mathfrak {U}_{\nu }\)-TSVM is far superior to the other three algorithms (\(\mathfrak {U}\)-SVM, ν-TSVM and \(\mathfrak {U}\)-TSVM) from the prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://archive.ics.uci.edu/ml/datasets.html

  2. http://cs.nyu.edu/roweis/data.html

  3. http://cswww.essex.ac.uk/mv/allfaces/index.html

References

  1. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  2. Vapnik V (2006) Estimation of dependence based on empirical data. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  3. Weston J, Collobert R, Sinz F, Bottou L, Vapnik V (2006) Inference with the Universum. In: Proceedings of the Int. Conf. Mach. Learn. ACM, Pittsburgh, pp 1009–1016

  4. Sinz FH, Chapelle O, Agarwal A, Schölkopf B (2007) An analysis of inference with the Universum. In: Proceedings of the Advances in Neural Information Process. Systems. MIT Press, Red Hook, NY, pp 1369–1376

  5. Zhang D, Wang J, Wang F, Zhang C (2008) Semi-supervised classification with the Universum. In: Proceedings of the SIAM Int. Conf. Data Mining. SIAM, Atlanta, pp 323–333

  6. Cherkassky V, Dhar S, Dai W (2011) Practical conditions for effectiveness of the universum learning. IEEE Trans Neural Netw 22(8):1241–255

    Article  Google Scholar 

  7. Shen C, Wang P, Shen F, Wang H (2012) UBoost: boosting with the Universum. IEEE Trans Pattern Anal Mach Intell 34(4): 825–832

    Article  Google Scholar 

  8. Gao T, Yang Z, Jing L (2009) On Universum-support vector machines. In: The 8th international symposium on operations research and its applications (ISORA09), pp 473–480

  9. Angulo C, Parra X (2003) K-SVCR: a support vector machine for multi-class classifcation. Neurocomputing 55(1–2): 57–77

    Article  Google Scholar 

  10. Shashua A, Levin A (2002) Taxonomy of large margin principle algorithms for ordinal regression problems. Technical Report, Leivniz Center for Research School of Computer Science and Eng., the hebrew University of Jerusaalem

  11. Bai X, Cherkassky V (2008) Gender classification of human faces using inference through contradictions. In: Proceedings of the IEEE Int. Joint Conf. Neural Netw., Hong Kong , pp 746–750

  12. Chen S, Zhang C (2009) Selecting informative Universum sample for semi-supervised learning. International joint conferences on artificial intelligence, pp 1016–1021

  13. Gao T, Tian Y, Shao X, Deng N (2008) Accurate prediction of translation initiation sites by Universum SVM. The 2nd international symposium on optimization and systems biology , pp 279–286

  14. Mangasarian OL, Wild EW (2006) Multisurface proximal support vector classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74

    Article  Google Scholar 

  15. Jayadeva, Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910

    Article  MATH  Google Scholar 

  16. Shao Y (2011) Improvements on twin support vector machine. IEEE Trans Neural Netw 22(6):962–968

    Article  Google Scholar 

  17. Kumar M, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4): 7535–7543

    Article  Google Scholar 

  18. Xu Y, Lv X, Xu W, Guo R (2012) An improved least squares twin support vector mahcine. Int J Inf Comput Sci 9(4): 1063–1071

    Google Scholar 

  19. Qi Z, Tian Y, Shi Y (2012) Robust twin support vector machine for pattern classification. Pattern Recogn 46(1):305–316

    Article  MATH  Google Scholar 

  20. Qi Z, Tian Y, Shi Y (2013) Structural twin support vector machine for classification. Knowl-Based Syst 43:74–81

    Article  Google Scholar 

  21. Kumar M, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recogn Lett 29(13): 1842–1848

    Article  Google Scholar 

  22. Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372

    Article  Google Scholar 

  23. Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recogn 44 (10–11):2678–2692

    Article  MATH  Google Scholar 

  24. Shao Y, Deng N, Yang Z (2012) Least squares recursive projection twin support vector machine for classification. Pattern Recogn 45(6):2299–2307

    Article  MATH  Google Scholar 

  25. Xu Y, Wang L (2014) k-nearest neighbor-based weighted twin support vector regression. Appl Intell 41 (1):299–309

    Article  Google Scholar 

  26. Xu Y, Guo R (2014) An improved ν-twin support vector machine. Appl Intell 41(1):42–54

    Article  Google Scholar 

  27. Xu Y, Pan X, Zhou Z, Yang Z, Zhang Y (2015) Structural least square twin support vector machine for classification. Appl Intell 42(3):527–536

    Article  Google Scholar 

  28. Chen X, Yang J, Ye Q, Liang J (2011) Recursive projection twin support vector machine via within-class variance minimization. Pattern Recogn 44(10–11):2643–2655

    Article  MATH  Google Scholar 

  29. Qi Z, Tian Y, Shi Y (2012) Twin support vector machine with Unviersum data. Neural Netw 36:112–119

    Article  MATH  Google Scholar 

  30. Schölkopf B, Smola A, Williamson R, Bartlett PL (2000) New support vector algorithms. Neural Comput 12(5):1083–1121

    Google Scholar 

  31. Peng X (2010) A ν-twin support vector machine (ν-TSVM) classifier and its geometric algorithms. Inf Sci 180: 3863–3875

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu Y, Wang L, Zhong P (2012) A rough margin-based ν-twin support vector machine. Neural Comput & Applic 21(6): 1307–1317

    Article  MathSciNet  Google Scholar 

  33. Li K, Ma H (2013) A fuzzy twin support vector machine algorithm. International Journal of Application or Innovation in Engineering and Management (IJAIEM) 2(3):459–465

    Google Scholar 

  34. Khemchandani R, Jayadeva, Chandra S (2009) Optimal kernel selection in twin support vector machines. Optim Lett 3(1): 77–88

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation. This work was supported by National Natural Science Foundation of China (No. 61153003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Chen, M., Yang, Z. et al. ν-twin support vector machine with Universum data for classification. Appl Intell 44, 956–968 (2016). https://doi.org/10.1007/s10489-015-0736-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-015-0736-0

Keywords

Navigation