Skip to main content
Log in

Fast detection method of green peach for application of picking robot

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

When the picking robot picks green peaches, there are problems such as the color of the fruit being similar to the background color, overlapping fruits, and small fruit size, uneven lighting, and branches and leaves occlusion. As a result, the picking robot cannot quickly detect green peaches. In order to solve the above problems, a lightweight object detection network for fast detection of green peaches is proposed, which is composed of a backbone network, feature enhancement network, Lightweight Self-Attention (LSA) network, and four-scale prediction network. First, the lightweight detection unit LeanNet of the backbone network is designed, which uses the idea of deep separable convolution to achieve fast detection. Secondly, the feature enhancement module (P-Enhance) is designed, which uses convolution kernels of different receptive fields to extract different perceptual information in the feature map, which enhances the network’s feature extraction ability for green peach. Then, the LSA module is designed to generate a local saliency map based on green peach features, which effectively suppressed the irrelevant area of the branch and leaf background. Finally, a four-scale prediction network is designed, in which the Four-scale Pyramid Fusion (FSPF) module can generate a four-scale feature pyramid, which includes the color and shape of the green peach at different network depths, and is conducive to the detection of small volume green peaches. The experimental results show that precision, recall, and F1 of our method in the green peach test set reached 97.3%, 99.7%, and 98.5%, respectively. In the actual picking scenes, Qualcomm Snapdragon 865 embedded devices equipped with different state-of-the-art methods are used. Through comparative experiments in various scenarios, compared with the state-of-the-art method, both in terms of experimental data and visual effects, there is a significant improvement, which can meet the real-time object detection needs of picking robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Xu ZF, Jia RS, Liu YB (2020) Fast method of detecting tomatoes in a complex scene for picking robots. IEEE Access 8:55289–55299

    Article  Google Scholar 

  2. Rong D, Wang H, Ying Y, Zhang Z, Zhang Y (2020) Peach variety detection using VIS-NIR spectroscopy and deep learning. Comput Electron Agric 175:105553

    Article  Google Scholar 

  3. Jizhan L (2017) Research progress analysis of robotic harvesting technologies in greenhouse. Trans Chin Soc Agricul Mach 48(12):1–18

    Google Scholar 

  4. Africa ADM, Tabalan ARV, Tan MAA (2020) Ripe fruit detection and classification using machine learning. Int J 8(5)

  5. Bansal R, Lee WS, Satish S (2013) Green citrus detection using fast Fourier transform (FFT) leakage. Precis Agric 14(1):59–70

    Article  Google Scholar 

  6. Chaivivatrakul S, Dailey MN (2014) Texture-based fruit detection. Precis Agric 15(6):662–683

    Article  Google Scholar 

  7. Lu J, Hu X (2017) Detecting green citrus fruit on trees in low light and complex background based on MSER and HCA. Trans Chin Soc Agricult Eng 33(19):196–201

    Google Scholar 

  8. Ding Y, Lee WS, Li M (2018) Feature extraction of hyperspectral images for detecting immature green citrus fruit. Front Agricult Sci Eng 5(4):475–484

    Google Scholar 

  9. Gan H, Lee WS, Alchanatis V, Ehsani R, Schueller JK (2018) Immature green citrus fruit detection using color and thermal images. Comput Electron Agric 152(9):117–125

    Article  Google Scholar 

  10. Wan S, Goudos S (2020) Faster R-CNN for multi-class fruit detection using a robotic vision system. Comput Netw 168:107036

    Article  Google Scholar 

  11. Liaw A, Wiener M (2020) Classification and regression by randomForest. R News 2(3):18–22

    Google Scholar 

  12. S.V. M. Vishwanathan, M. Narasimha Murty. (2002) SSVM: a simple SVM algorithm. Proceedings of the 2002 international joint conference on neural networks (IJCNN), Honolulu, HI, USA, 3, 2393-2398. https://doi.org/10.1109/IJCNN.2002.1007516

  13. Rätsch G, Onoda T, Müller KR (2001) Soft margins for AdaBoost. Mach Learn 42(3):287–320

    Article  Google Scholar 

  14. R. Girshick, J. Donahue, T. Darrell, J. Malik. (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE conference on computer vision and pattern recognition (CVPR), Columbus, OH, 580-587. https://doi.org/10.1109/CVPR.2014.81

  15. He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916

    Article  Google Scholar 

  16. R. Girshick. (2015) Fast R-CNN. IEEE international conference on computer vision (ICCV), Santiago, 1440-1448. https://doi.org/10.1109/ICCV.2015.169

  17. Ren S, He K, Girshick R, Sun J (2016) Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

    Article  Google Scholar 

  18. K. He, G. Gkioxari, P.R. Dollár (2017) Girshick, Mask R-CNN. IEEE International Conference on Computer Vision (ICCV), Venice, 2980–2988. https://doi.org/10.1109/ICCV.2017.322

  19. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, 779-788. https://doi.org/10.1109/CVPR.2016.91

  20. Redmon J, Farhadi A (2018): YOLOv3: an incremental improvement. [online] Available: https://arxiv.org/abs/1804.02767

  21. J. Redmon, A. Farhadi. (2017) YOLO9000: better, faster, stronger. IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, HI, 6517-6525. https://doi.org/10.1109/CVPR.2017.690

  22. Bochkovskiy A, Wang C Y, Liao H Y M. (2020) YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934

  23. Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector. European Conference on Computer Vision (ECCV) 9905:21–37. https://doi.org/10.1007/978-3-319-46448-0_2

    Article  Google Scholar 

  24. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. Chen. (2018) MobileNetV2: inverted residuals and linear bottlenecks. IEEE/CVF conference on computer vision and pattern recognition (CVPR), Salt Lake City, UT, 4510-4520. https://doi.org/10.1109/CVPR.2018.00474

  25. X. Zhang, X. Zhou, M. Lin, J. Sun. (2018) ShuffleNet: an extremely efficient convolutional neural network for Mobile devices. IEEE/CVF conference on computer vision and pattern recognition (CVPR), Salt Lake City, UT, 6848-6856. https://doi.org/10.1109/CVPR.2018.00716

  26. Ma N., Zhang X., Zheng HT., Sun J. (2018) ShuffleNet V2: practical guidelines for efficient CNN architecture design. Proceedings of the European conference on computer vision (ECCV), 11218, 116-131. https://doi.org/10.1007/978-3-030-01264-9_8

  27. Szegedy C, Ioffe S, Vanhoucke V, Alemi A. (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Mountain View, CA 31,1

  28. Wu Y, He K (2020) Group normalization. Int J Comput Vis 128(3):742–755

    Article  Google Scholar 

  29. Woo S., Park J., Lee JY., Kweon I.S. (2018) CBAM: convolutional block attention module. Proceedings of the European conference on computer vision (ECCV),11211, 3-19. https://doi.org/10.1007/978-3-030-01234-2_1

  30. Feldman D, Schmidt M, Sohler C (2020) Turning big data into tiny data: constant-size coresets for k-means, PCA, and projective clustering. SIAM J Comput 49(3):601–657

    Article  MathSciNet  Google Scholar 

  31. Kandhway P, Bhandari AK, Singh A (2020) A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization. Biomed Signal Process Control 56:101677

    Article  Google Scholar 

  32. Veluchamy M, Subramani B (2020) Fuzzy dissimilarity color histogram equalization for contrast enhancement and color correction. Appl Soft Comput 89:106077

    Article  Google Scholar 

  33. Rao BS (2020) Dynamic histogram equalization for contrast enhancement for digital images. Appl Soft Comput 89:106114

    Article  Google Scholar 

  34. Dai J, Li Y, He K, Sun, J. (2016) R-fcn: object detection via region-based fully convolutional networks. Conference and workshop on neural information processing systems (NIPS), 379-387

  35. J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, D. Lin. (2019) Libra R-CNN: towards balanced learning for object detection. IEEE/CVF conference on computer vision and pattern recognition (CVPR), Long Beach, CA, USA, 821-830. https://doi.org/10.1109/CVPR.2019.00091

  36. Zhang H, Chang H, Ma B. (2020) Dynamic R-CNN: towards high quality object detection via dynamic training. Proceedings of the European conference on computer vision (ECCV), 2, arXiv preprint arXiv:2004.06002

  37. P. Zhang, Y. Zhong, X. Li. (2019) SlimYOLOv3: narrower, faster and better for real-time UAV applications. IEEE/CVF international conference on computer vision workshop (ICCVW), Seoul, Korea (south), 37-45. https://doi.org/10.1109/ICCVW.2019.00011

  38. C. Chen, M. Liu, X. Meng, W. Xiao, Q. Ju. (2020) RefineDetLite: a lightweight one-stage object detection framework for CPU-only devices. IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Seattle, WA, USA, 2997-3007. https://doi.org/10.1109/CVPRW50498.2020.00358

  39. Xu ZF, Jia RS, Sun HM (2020) Light-YOLOv3: fast method for detecting green mangoes in complex scenes using picking robots. Appl Intell 50(12):4670–4687

    Article  Google Scholar 

  40. Lin T, Goyal P, Girshick R, He K, Dollár P (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–327. https://doi.org/10.1109/TPAMI.2018.2858826

    Article  Google Scholar 

  41. Z. Tian, C. Shen, H. Chen, T. He. (2019) FCOS: fully convolutional one-stage object detection. IEEE/CVF international conference on computer vision (ICCV), Seoul, Korea (south), 9626-9635. https://doi.org/10.1109/ICCV.2019.00972

  42. A. Sheshkus, A. Ingacheva, V. Arlazarov, D. Nikolaev. (2019) HoughNet: neural network architecture for vanishing points detection. International conference on document analysis and recognition (ICDAR), Sydney, Australia, 844-849. https://doi.org/10.1109/ICDAR.2019.00140

Download references

Acknowledgements

The authors are grateful for collaborative funding support from the Natural Science Foundation of Shandong Province, China (ZR2018MEE008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Mei Sun or Rui-Sheng Jia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Sun, HM., Yu, JT. et al. Fast detection method of green peach for application of picking robot. Appl Intell 52, 1718–1739 (2022). https://doi.org/10.1007/s10489-021-02456-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02456-6

Keywords

Navigation