Skip to main content
Log in

Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, Q rot1 , EQ rot1 and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to validate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Ahn: Vibration of a pendulum consisiting of a bob suspended from a wire: the method of integral equations. Quart. Appl. Math. 39 (1981), 109–117.

    MathSciNet  MATH  Google Scholar 

  2. A. Alonso A.D. Russo: Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods. J. Comput. Appl. Math. 223 (2009), 177–197.

    Article  MathSciNet  MATH  Google Scholar 

  3. A.B. Andreev, T.D. Todorov: Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24 (2004), 309–322.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Arbogast, Z. Chen: On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comput. 64 (1995), 943–972.

    MathSciNet  MATH  Google Scholar 

  5. M. G. Armentano, R.G. Durán: Asymptotic lower bounds for eigenvalues by non-conforming finite element methods. ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93–101.

    MATH  Google Scholar 

  6. M. G. Armentano, C. Padra: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58 (2008), 593–601.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Babuška, J. Osborn: Eigenvalue problems. In: Finite Element Methods (Part 1). Handbook of Numerical Analysis, Vol. 2. North-Holland, Amsterdam, 1991, pp. 641–787.

    Chapter  Google Scholar 

  8. C. Beattie, F. Goerisch: Methods for computing lower bounds to eigenvalues of self-adjoint operators. Numer. Math. 72 (1995), 143–172.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Bergman, M. Schiffer: Kernel Functions and Elliptic Differential Equations in Math-ematical Physics. Academic Press, New York, 1953.

    Google Scholar 

  10. A. Bermúdez, R. Rodríguez, D. Santamarina: A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000), 201–227.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Bernardi, F. Hecht: Error indicators for the mortar finite element discretization of the Laplace equation. Math. Comput. 71 (2002), 1371–1403.

    MathSciNet  MATH  Google Scholar 

  12. J. H. Bramble, J. E. Osborn: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. Math. Found. Finite Element Method Applications PDE (A. Aziz, ed.). Academic Press, New York, 1972, pp. 387–408.

    Google Scholar 

  13. D. Bucur, I. R. Ionescu: Asymptotic analysis and scaling of friction parameters. Z. Angew. Math. Phys. 57 (2006), 1042–1056.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Cai, X. Ye, S. Zhang: Discontinuous Galerkin finite element methods for interface problems: A priori and a posteriori error estimations. SIAM J. Numer. Anal. 49 (2011), 1761–1787.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. G. Ciarlet: Basic error estimates for elliptic problems. In: Part 1. Finite Element Methods. Handbook of Numerical Analysis, Vol. 2 (P. Ciarlet, J.-L. Lions, eds.). North-Holland, 1991, pp. 21–343.

  16. C. Conca, J. Planchard, M. Vanninathan: Fluid and Periodic Structures. John Wiley & Sons, Chichester, 1995.

    Google Scholar 

  17. M. Crouzeix, P.-A. Raviart: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33–76.

    MathSciNet  Google Scholar 

  18. N. Dunford, J. T. Schwartz: Linear Operators, Part II: Spectral Theory. Selfadjoint Operators in Hilbert Space. Interscience Publishers/JohnWiley & Sons, New York/London, 1963.

    Google Scholar 

  19. F. Goerisch, J. Albrecht: The Convergence of a New Method for Calculating Lower Bounds to Eigenvalues, Equadiff 6 (Brno, 1985). Lecture Notes in Math. Vol. 1192. Springer, Berlin, 1986.

    Google Scholar 

  20. F. Goerisch, Z. He: The Determination of Guaranteed Bounds to Eigenvalues with the Use of Variational Methods. I. Computer Arithmetic and Self-validating Numerical Methods (Basel, 1989), Notes Rep. Math. Sci. Engrg., 7. Academic Press, Boston, 1990.

    Google Scholar 

  21. H. D. Han, Z. Guan: An analysis of the boundary element approximation of Steklov eigenvalue problems. In: Numerical Methods for Partial Differential Equations. World Scientific, River Edge, 1992, pp. 35–51.

    Google Scholar 

  22. H. D. Han, Z. Guan, B. He: Boundary element approximation of Steklov eigenvalue problem. Gaoxiao Yingyong Shuxue Xuebao Ser. A 9 (1994), 128–135. (In Chinese.)

    MathSciNet  Google Scholar 

  23. D. B. Hinton, J. K. Shaw: Differential operators with spectral parameter incompletely in the boundary conditions. Funkc. Ekvacioj, Ser. Int. 33 (1990), 363–385.

    MathSciNet  MATH  Google Scholar 

  24. J. Hu, Y. Huang, Q. Lin: The analysis of the lower approximation of eigenvalues by nonconforming elements. To appear.

  25. J. Huang, T. Lü: The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems. J. Comput. Math. 22 (2004), 719–726.

    MathSciNet  MATH  Google Scholar 

  26. M. Křížek, H.-G. Roos, W. Chen: Two-sided bounds of the discretization error for finite elements. ESAIM, Math. Model. Numer. Anal. 45 (2011), 915–924.

    Article  MathSciNet  Google Scholar 

  27. M. Li, Q. Lin, S. Zhang: Extrapolation and superconvergence of the Steklov eigenvalue problem. Adv. Comput. Math. 33 (2010), 25–44.

    Article  MathSciNet  MATH  Google Scholar 

  28. Q. Lin, J. Lin: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing, 2006.

    Google Scholar 

  29. Q. Lin, L. Tobiska, A. Zhou: Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25 (2005), 160–181.

    Article  MathSciNet  MATH  Google Scholar 

  30. Q. Lin, H. Xie, F. Luo, Y. Li, Y. Yang: Stokes eigenvalue approximations from below with nonconforming mixed finite element methods. Math. Pract. Theory 40 (2010), 157–168.

    MathSciNet  Google Scholar 

  31. R. Rannacher, S. Turek: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equations 8 (1992), 97–111.

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Tang, Z. Guan, H. Han: Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation. J. Comput. Math. 16 (1998), 165–178.

    MathSciNet  MATH  Google Scholar 

  33. L. Wang, X. Xu: Foundation of Mathematics in Finite Element Methods. Scientific and Technical Publishers, Beijing, 2004.

    Google Scholar 

  34. Y. Yang: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18 (2000), 413–418.

    MathSciNet  MATH  Google Scholar 

  35. Y. Yang, Z. Chen: The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators. Sci. China, Ser. A 51 (2008), 1232–1242.

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Yang, Q. Li, S. Li: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59 (2009), 2388–2401.

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Yang, H. Bi: Lower spectral bounds by Wilson’s brick discretization. Appl. Numer. Math. 60 (2010), 782–787.

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Yang, Z. Zhang, F. Lin: Eigenvalue approximation from below using non-conforming finite elements. Sci. China Math. 53 (2010), 137–150.

    Article  MathSciNet  MATH  Google Scholar 

  39. Z. Zhang, Y. Yang, Z. Chen: Eigenvalue approximation from below byWilson’s element. Math. Numer. Sin. 29 (2007), 319–321. (In Chinese.)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li.

Additional information

This work has been supported in part by the National Science Foundation of China (NSFC 11001259, 11031006, 2011CB309703).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Lin, Q. & Xie, H. Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. Appl Math 58, 129–151 (2013). https://doi.org/10.1007/s10492-013-0007-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-013-0007-5

Keywords

MSC 2010

Navigation