Skip to main content
Log in

Study of the Log-Layer Structure in Wall Turbulence Over a Very Large Range of Reynolds Number

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Studies of the logarithmic layer structure in turbulent boundary layers are presented that span three orders of magnitude change in Reynolds number. The experiments considered used two separate laboratory scale facilities, as well as the atmospheric surface layer at the SLTEST facility in Utah. Several experimental techniques were used in order to probe the three-dimensional nature of the flow structures. The main focus is on two-point correlation statistics at a given z/δ, which are found to agree well over all Reynolds numbers when scaled with an outer length-scale. Large-scale coherence recently noted in the logarithmic region of laboratory-scale boundary layers is also found to be present in the atmospheric surface layer flow. Recent findings regarding the influence of these large scale motions on the near-wall region are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, K.C., Adrian, R.J.: Very large-scale motion in the outer layer. Phys. Fluids 11(2), 417–422 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hutchins, N., Marusic, I.: Evidence of very long meandering streamwise structures in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)

    Article  MATH  ADS  Google Scholar 

  3. del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004)

    Article  MATH  ADS  Google Scholar 

  4. Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Phys. Fluids 18, 011702 (2006)

    Article  ADS  Google Scholar 

  5. Guala, M., Hommema, S.E., Adrian, R.J.: Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521–542 (2006)

    Article  MATH  ADS  Google Scholar 

  6. Ganapathisubramani, B., Longmire, E.K., Marusic, I.: Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 35–46 (2003)

    Article  MATH  ADS  Google Scholar 

  7. Kim, K.C., Adrian, R.: Very large-scale motion in the outer layer. Phys. Fluids 11, 417–422 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jiménez, J.: The largest scales of turbulent wall flows. In: CTR Annual Research Briefs, Progress in Astronautics and Aeronautics, pp. 943–945. Stanford University (1998)

  9. del Álamo, J.C., Jiménez, J.: Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, 41–44 (2003)

    Article  ADS  Google Scholar 

  10. Hutchins, N., Marusic, I.: Large-scale influences in near-wall turbulence. Proc. R. Soc. Lond. A 365, 647–664 (2007)

    ADS  Google Scholar 

  11. Hambleton, W.T., Hutchins, N., Marusic, I.: Multiple plane PIV measurements in a turbulent boundary layer. J. Fluid Mech. 560, 53–64 (2006)

    Article  MATH  ADS  Google Scholar 

  12. Nickels, T.B., Marusic, I., Hafez, S., Hutchins, N., Chong, M.S.: Some predictions of the attached eddy model for a high Reynolds number boundary layer. Proc. R. Soc. Lond. A 365, 807–822 (2007)

    ADS  Google Scholar 

  13. Kunkel, G.J., Marusic, I.: Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375–402 (2006)

    Article  ADS  Google Scholar 

  14. Nickels, T.B., Marusic, I., Hafez, S.M., Chong, M.S.: Evidence of the k −1 law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95, 074501 (2005)

    Article  ADS  Google Scholar 

  15. Klewicki, J.C., Metzger, M.M., Kelner, E., Thurlow, E.M.: Viscous sublayer flow visualizations at R θ  ≅ 1500000. Phys. Fluids 7 (1995)

  16. Metzger, M.M., Klewicki, J.C.: A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids 13 (2001)

  17. Marusic, I., Kunkel, G.J.: Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 15, 2461–2464 (2003)

    Article  ADS  Google Scholar 

  18. Tomkins, C.D., Adrian, R.J.: Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 37–74 (2003)

    Article  MATH  ADS  Google Scholar 

  19. Adrian, R.J., Moin, P.: Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531–559 (1988)

    Article  MATH  ADS  Google Scholar 

  20. del Álamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D.: Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329–358 (2006)

    Article  MATH  ADS  Google Scholar 

  21. Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Marusic, I.: On the role of large-scale structures in wall turbulence. Phys. Fluids 13(3), 735–743 (2001)

    Article  ADS  Google Scholar 

  23. Balakumar, B.J., Adrian, R.J.: Large- and very-large scale motions in channel and boundary-layer flows. Proc. R. Soc. Lond. A 365, 665–681 (2007)

    ADS  Google Scholar 

  24. Christensen, K.T., Adrian, R.J.: Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433–443 (2001)

    Article  MATH  ADS  Google Scholar 

  25. Tanahashi, M., Kang, S.-J., Miyamoto, T., Shiokawa, S., Miyauchi, T.: Scaling law of fine scale eddies in turbulent channel flows up to Re τ = 800. Int. J. Heat Fluid Fl. 25, 331–340 (2004)

    Article  Google Scholar 

  26. Kasagi, N., Fukagata, K., Suzuki, Y.: Adaptive control of wall-turbulence for skin friction drag reduction and some consideration for high Reynolds number flows. In: 2nd International Symposium on Seawater Drag Reduction, pp. 17–31. Busan (2005)

  27. Hutchins, N., Hambleton, W.T., Marusic, I.: Inclined cross-stream stereo PIV measurements in turbulent boundary layers. J. Fluid Mech. 541, 21–54 (2005)

    Article  MATH  ADS  Google Scholar 

  28. Marusic, I., Hutchins, N.: Experimental study of wall turbulence: implications for control. In: Gad-el-Hak, M. (ed.) Transition and Turbulence Control (2005)

  29. del Álamo, J.C., Jiménez, J.: Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205–213 (2006)

    Article  MATH  ADS  Google Scholar 

  30. Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press (1956)

  31. Perry, A.E., Chong, M.S.: On the mechanism of wall turbulence. J. Fluid Mech. 119, 173–217 (1982)

    Article  MATH  ADS  Google Scholar 

  32. Perry, A.E., Marusic, I.: A wall wake model for the turbulent structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361–388 (1995)

    Article  MATH  ADS  Google Scholar 

  33. Bandyopadhyay, P.R., Hussain, A.K.M.F.: The coupling between scales in shear flows. Phys. Fluids 27(9), 2221–2228 (1984)

    Article  ADS  Google Scholar 

  34. Rao, K.N., Narasimha, R., Badri Narayanan, M.A.: The ‘bursting’ phenomena in a turbulent boundary layer. J. Fluid Mech. 48, 339–352 (1971)

    Article  ADS  Google Scholar 

  35. Adrian, R.J., Christensen, K.T., Lui, Z.-C.: Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275–290 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Marusic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marusic, I., Hutchins, N. Study of the Log-Layer Structure in Wall Turbulence Over a Very Large Range of Reynolds Number. Flow Turbulence Combust 81, 115–130 (2008). https://doi.org/10.1007/s10494-007-9116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-007-9116-0

Keywords

Navigation