Skip to main content
Log in

LES of Premixed Flame Propagation in a Free Straight Vortex

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The paper presents experimental and numerical investigations of flame propagation in a free straight vortex which is formed by a movable block swirl generation device. PIV was used to characterize the isothermal flow experimentally and high speed video films were used to gain informations on the flame propagation.

Numerical simulations have been performed using the LES technique. The simulations rely on presumed-PDF combustion modeling with a chemical mechanism reduced by an ILDM approach which has been validated on two test cases.

Numerical and experimental study confirm that the phenomenon of the combustion induced vortex breakdown can take place in an unconfined turbulent vortex with a strong inner axial flow. The LES analysis allowed to determine the main physical mechanisms of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashurst, W.T.: Flame propagation along a vortex: the baroclinic push. Combust. Sci. Technol. 112, 175–185 (1996)

    Article  Google Scholar 

  2. Brown, G.L., Lopez, J.M.: Axisymmetric vortex breakdown part 2. Physical mechanisms. J. Fluid Mech. 221, 553–576 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Carley, M.: Evaluation of biot-savart integrals on tetrahedral meshes. SIAM J. Sci. Comput. arXiv:0712.1695v1[math.NA] (2009)

  4. Chen, Y.-C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.S.: An experimental data set for turbulent premixed flames. http://www.itv.rwth-aachen.de/index.php?id=84&L=0 (2007)

  5. Chen, Y.-C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, S.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107, 223–244 (1996)

    Article  Google Scholar 

  6. Chomiak, J.: Dissipation fluctuations and the structure and propagation of turbulent flames in premixed gases at high reynolds numbers. In: Sixteenth Symposium (International) on Combustion (1977)

  7. Domingo, P., Vervisch, L.: Dns of partially premixed flame propagating in a turbulent rotating flow. In: Proceedings of the Combustion Institute, vol. 31, pp. 1657–1664 (2007)

  8. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140, 147–160 (2005)

    Article  Google Scholar 

  9. Frenklach, M., Bowman, T., Smith, G., Gardiner, B.: Homepage of GRI-MECH reaction mechanism. http://www.me.berkeley.edu/gri_mech (2009)

  10. Fritz, J.: Flammenrückschlag durch verbrennungsinduziertes Wirbelaufplatzen. PhD thesis, Technical University of Munich (2003)

  11. Fritz, J., Kröner, M., Sattelmayer, T.: Flashback in a swirl burner with cylindrical premixing zone. J. Eng. Gas Turbine Power 126(2), 276–283 (2004)

    Article  Google Scholar 

  12. Goodwin, D.G.: Cantera Users Guide. Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA (2001)

    Google Scholar 

  13. Günther, R.: Verbrennungen und Feuerungen. Springer, Heidelberg (1984)

    Google Scholar 

  14. Hasegawa, T., Michikami, S., Nomura, T., Gotoh, D., Sato, T.: Flame development along a straight vortex. Combust. Flame 129, 294–304 (2002)

    Article  Google Scholar 

  15. Hasegawa, T., Nishikado, K.: Effect of density ratio on flame propagation along a vortex tube. In: Twenty-Sixth Symposium (International) on Combustion, pp. 291–297 (1996)

  16. Herrmann, M.: Numerical simulation of premixed turbulent combustion based on a level set flamelet model. PhD thesis, RWTH Aachen (2001)

  17. Hoffmann, A.: Modellierung turbulenter Vormischverbrennung. PhD thesis, Universität Karlsruhe (2004)

  18. Issa, R.I., Ahmadi-Befrui, B., Beshay, K.R., Gosman, A.D.: Solution of the implicitly discretised reacting flow equations by operator-splitting. J. Comput. Phys. 93, 388–410 (1991)

    Article  MATH  ADS  Google Scholar 

  19. Kiesewetter, F.: Modellierung des verbrennungsinduzierten Wirbelaufplatzens in Vormischbrennern. PhD thesis, Technical University of Munich (2005)

  20. Konle, M., Kiesewetter, F., Sattelmayer, T.: Simultaneous high repetition rate PIV–LIF-measurements of CIVB driven flashback. Exp. Fluids 44, 529–538 (2008)

    Article  Google Scholar 

  21. Kornev, N., Hassel, E.: Synthesis of homogeneous anisotropic divergence free turbulent fields with prescribed second-order statistics by vortex dipoles. Phys. Fluids 19(5) (2007)

  22. Kröger, H., Kornev, N., Wendig, D., Hassel, E.: Premixed flame propagation in a free straight vortex. Forsch. Ing.wes. 72(2), 85–92 (2008)

    Article  Google Scholar 

  23. Kröner, M.: Einfluss lokaler Löschvorgänge auf den Flammenrückschlag durch verbrennungsinduziertes Wirbelaufplatzen. PhD thesis, Technical University of Munich (2003)

  24. Lopez, J.M.: Axisymmetric vortex breakdown part 1. Confined swirling flow. J. Fluid Mech. 221, 533–552 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Maas, U., Bykov, V.: The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model. 11(6), 839–862 (2007)

    Article  MATH  Google Scholar 

  26. Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)

    Article  Google Scholar 

  27. Nwagwe, I.K., Weller, H.G., Tabor, G.R., Gosman, A.D., Lawes, M., Sheppard, C.G.W., Wooley, R.: Measurements and large eddy simulations of turbulent premixed flame kernel growth. In: Proceedings of the Combustion Institute, vol. 28, pp. 59–65. The Combustion Institute, Pittsburgh (2000)

  28. Pitsch, H., de Langeneste, L.D.: Large-eddy simulation of premixed turbulent combustion using a level-set approach. In: Proceedings of the Combustion Institute, vol. 29, pp. 2001–2008. The Combustion Institute, Pittsburgh (2002)

    Google Scholar 

  29. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards, Philadelphia (2005)

    Google Scholar 

  30. Umemura, A., Tomita, K.: Rapid flame propagation in a vortex tube in perspective of vortex breakdown phenomena. Combust. Flame 125, 820–838 (2001)

    Article  Google Scholar 

  31. van Oijen, J.: Flamelet-generated manifolds: development and application to premixed laminar flames. PhD thesis, Technical University Eindhoven (2002)

  32. Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. In: Twenty-Seventh Symposium (International) on Combustion, pp. 899–907. The Combustion Institute, Pittsburgh (1998)

    Google Scholar 

  33. Weller, H.G., Tabor, G.: Large eddy simulation of premixed turbulent combustion using Ξ flame surface wrinkling model. Flow Turbul. Combust. 72(1), 1–27 (2004)

    Article  MATH  Google Scholar 

  34. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object orientated techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Kröger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröger, H., Hassel, E., Kornev, N. et al. LES of Premixed Flame Propagation in a Free Straight Vortex. Flow Turbulence Combust 84, 513–541 (2010). https://doi.org/10.1007/s10494-009-9242-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-009-9242-y

Keywords

Navigation