Skip to main content
Log in

Modeling of Turbulent Natural Gas and Biogas Flames of the Delft Jet-in-Hot-Coflow Burner: Effects of Coflow Temperature, Fuel Temperature and Fuel Composition on the Flame Lift-Off Height

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasi, T., Tauseef, S.M., Abbasi, S.A.: Biogas and biogas energy: An introduction. Biogas Energy, SpringerBriefs in Environmental Science, pp 1–10. doi:10.1007/978-1-4614-1040-9_1 (2012)

  2. Muradov, N.Z., Veziroglu, T.N.: Green path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int. J. Hydrog. Energy 33, 6804–6839 (2008)

    Article  Google Scholar 

  3. Ito, Y., Gupta, A.K., Yoshikawa, K., Shimo, N.: Combustion characteristics of low calorific value gas with high temperature and low-oxygen concentration air. In: Proceedings of the 5th High Temperature Air Combustion and Gasification Conference, Yokohama, Japan (2002)

  4. Cavaliere, A., Joannon, M.D.: Mild combustion. Prog. Energy Comb. Sci. 30, 329–366 (2004)

    Article  Google Scholar 

  5. Cabra, R., Myhrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser Raman–Rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Comb. Inst. 29, 1881–1888 (2003)

    Article  Google Scholar 

  6. Dally, B.B., Karpetis, A.N., Barlow, R.S.: Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Comb. Inst. 29, 1147–1154 (2002)

    Article  Google Scholar 

  7. Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames. Comb. Flame 157, 1167–1178 (2010)

    Article  Google Scholar 

  8. Szegö, G.G.: Experimental and numerical investigation of a parallel jet MILD combustion burner system in a laboratory-scale furnace. PhD thesis, The University of Adelaide (2010)

  9. Plessing, T., Peters, N., Wünning, J.G.: Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Proc. Comb. Inst. 27, 3197–3204 (1998)

    Article  Google Scholar 

  10. Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Comb. Flame 158, 1553–1563 (2011)

    Article  Google Scholar 

  11. Christo, F.C., Dally, B.B.: Modeling turbulent reacting jets issuing into a hot and diluted coflow. Comb. Flame 142, 117–129 (2005)

    Article  Google Scholar 

  12. Christo, F.C., Dally, B.B.: Application of transport PDF approach for modelling MILD combustion. In: 15th Australasian Fluid Mechanics Conference, Sydney (2004)

  13. Kim, S.H., Huh, K.Y., Dally, B.B.: Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow. Proc. Comb. Inst. 30, 751–757 (2005)

    Article  Google Scholar 

  14. De, A., Oldenhof, E., Sathiah, P., Roekaerts, D.: Numerical simulation of Delft-jet-in-hot-coflow (DJHC) flames using the Eddy dissipation concept model for turbulence-chemistry interaction. Flow, Turbul. Comb. 87, 537–567 (2011)

    Article  MATH  Google Scholar 

  15. Frassoldati, A., Shrama, P., Cuoci, A., Faravelli, T., Ranzi, E.: Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow. Appl. Ther. Eng. 30, 376–383 (2010)

    Article  Google Scholar 

  16. Mardani, A., Tabejamaat, S., Ghamari, M.: Numerical study of influence of molecular diffusion in the MILD combustion regime. Comb. Theory Model. 14, 747–774 (2010)

    Article  MATH  Google Scholar 

  17. Mardani, A., Tabejamaat, S., Baig mohammadi, A.: Numerical study of the effect of turbulence on rate of reactions in the MILD combustion regime. Comb. Theory Model. 15, 753–772 (2011)

    Article  Google Scholar 

  18. Aminian, J., Galletti, C., Shahhosseini, S., Tognotti, L.: Numerical investigation of a MILD combustion burner: analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow, Turbul. Comb. 88, 597–623 (2012)

    Article  MATH  Google Scholar 

  19. Ihme, M., See, Y.C.: LES flamelet modeling of a three-stream MILD combustor: analysis of flame sensitivity to scalar inflow conditions. Proc. Comb. Inst. 33, 1309–1317 (2010)

    Article  Google Scholar 

  20. Ihme, M., Zhang, J., He, G., Dally, G.: Large eddy simulation of a Jet-in-Hot-Coflow burner operating in the oxygen diluted combustion regime. Flow, Turbul. Comb. 89, 449–464 (2012)

    Article  Google Scholar 

  21. Kulkarni, R.M., Polifke, W.: LES of Delft-Jet-In-Hot-Coflow (DJHC) with tabulated chemistry and stochastic fields combustion model. Fuel Process. Tech. 107, 138–146 (2013)

    Article  Google Scholar 

  22. Cabra, R., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Lifted methane–air jet flames in a vitiated coflow. Comb. Flame 143, 491–506 (2005)

    Article  Google Scholar 

  23. Ertesvåg, I.S., Magnussen, B.F.: The eddy dissipation turbulence energy cascade model. Comb. Sci. Tech. 159, 213–235 (2000)

    Article  Google Scholar 

  24. Kumar, S., Paul, P.J., Mukunda, H.S.: Prediction of flame liftoff height of diffusion/partially premixed jet flames and modeling of mild combustion burners. Comb. Sci. Tech. 179, 2219–2253 (2007)

    Article  Google Scholar 

  25. Lyons, K.M.: Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments. Prog. Energy Comb. Sci. 33, 211–231 (2007)

    Article  Google Scholar 

  26. Kalghatgi, G.T.: Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Comb. Sci. Tech. 41, 17–29 (1984)

    Article  Google Scholar 

  27. Peters, N., Williams, F.A.: Liftoff characteristics of turbulent jet diffusion flames. AIAA J. 21, 423–429 (1983)

    Article  MATH  Google Scholar 

  28. Miake-Lye, R.C., Hammer, J.A.: Lifted turbulent jet flames: a stability criterion based on the jet large-scale structure. Proc. Comb. Inst., 817–824 (1988)

  29. Kazakov, A., Frenklach, M.: Reduced reaction sets based on GRIMech1.2. Available at http://www.me.berkeley.edu/drm./

  30. van Oijen, J.A., Lammers, F.A: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Comb. Flame 127, 2124–2134 (2001)

    Article  Google Scholar 

  31. Sarras, G., Stoellinger, M.K., Roekaerts, D.J.E.M.: Transported PDF simulations of the Delft-jet-in-hot-coflow, burner based on 3D FGM tabulated chemistry. In: Book of Extended Abstracts, Turbulence, Heat and Mass Transfer 7. In: Hanjalic, K., Nagano, Y., Borello, D., Jakirlic, S. (eds.) Begell House Inc (2012)

  32. Etaati, M.A., Stollinger, M., Roekaerts, D.J.E.M.: Tabulated chemistry for three stream non-adiabatic combustion problems. in book of abstracts Combura Symposium, Maastricht, The Netherlands, Published by Technology Foundation STW (2010)

  33. Oldenhof, E.: Autoignition and flame stabilisation processes in turbulent non-premixed hot coflow flames. PhD thesis, Delft University of Technology (2012)

  34. Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Transient response of the delft jet-in-hot coflow flames. Comb. Flame 159, 697–706 (2011)

    Article  Google Scholar 

  35. Naud, B., Jimenez, C., Roekaerts, D.J.E.M.: A consistent hybrid PDF method: implementation details and application to the simulation of a bluff-body stabilised flame. Prog. Comp. Fluid Dyn 6, 147–157 (2006)

    MathSciNet  Google Scholar 

  36. Merci, B., Naud, B., Roekaerts, D.J.E.M.: Joint scalar versus joint velocity-scalar PDF simulations of bluff-body stabilized flames with REDIM. Flow, Turbul. Comb. 82, 185–209 (2009)

    Article  MATH  Google Scholar 

  37. Sarras, G., Stoellinger, M.K., Roekaerts, D.J.E.M.: Transported PDF simulations of the Delft Jet-in-Hot-Coflow burner based on 4D-FGM tabulated chemistry. In: Proceedings of the 6th European Combustion Meeting, Lund, pp. 1–80 (2013)

  38. Peeters, T.W.J.: Numerical modeling of turbulent natural gas flames. PhD thesis, Delft University of Technology (1995)

  39. Bilger, R.W., Stårner S.H., Kee, R.J.: On reduced mechanisms for methane-air combustion in non-premixed flames. Comb. Flame 80, 135–149 (1990)

    Article  Google Scholar 

  40. Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Conditional flow fieldstatistics of jet-in-hot-coflowflames. Comb. Flame 160, 1428–1440 (2013)

    Article  Google Scholar 

  41. Ishida, H.: Lift-off and blow-off of laminar jet premixed flame of flammable mixture with Inert Gas. Research reports, Nagaoka College of Technology, Japan, 40, Part 2, pp. 25–28 (2004)

  42. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., Lissianski, V.V., Qin, Z.: Gri-Mech 3.0, www.me.berkeley.edu/gri-mech

  43. CHEM1D. A one-dimensional laminar flame code. Eindhoven University of Technology. www.combustion.tue.nl/chem1d

  44. Naud, B., Merci, B., Roekaerts, D.: Generalised Langevin model in correspondence with a chosen scalar-flux second-moment closure. Flow, Turbul. Comb. 85, 363–382 (2010)

    Article  MATH  Google Scholar 

  45. Bogacki, P., Shampine, L.F.: A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2, 321–325 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  46. Dopazo, C., O’Brien, E.E.: An approach to autoignition of a turbulent mixture. Acta Astron. 1(9), 1239–1266 (1974)

    Article  MATH  Google Scholar 

  47. Ramaekers, W.J.S., van Oijen, J.A., de Goey, L.P.H.: A priori testing of flamelet generated manifolds for turbulent partially premixed methane/air flames. Flow, Turbul. Comb. 84, 439–458 (2010)

    Article  MATH  Google Scholar 

  48. Arteaga Mendez, L.D., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Effect of hydrogen addition on the structure of natural-gas jet-in-hot-coflow flames. Proc. Combust. Inst., submitted for publication (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. E. M. Roekaerts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarras, G., Mahmoudi, Y., Arteaga Mendez, L.D. et al. Modeling of Turbulent Natural Gas and Biogas Flames of the Delft Jet-in-Hot-Coflow Burner: Effects of Coflow Temperature, Fuel Temperature and Fuel Composition on the Flame Lift-Off Height. Flow Turbulence Combust 93, 607–635 (2014). https://doi.org/10.1007/s10494-014-9555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9555-3

Keywords

Navigation