Skip to main content
Log in

Effects of the Actuation on the Boundary Layer of an Airfoil at Reynolds Number Re = 60000

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Synthetic (zero net mass flux) jets are an active flow control technique to manipulate the flow field in wall-bounded and free-shear flows. The present paper focuses on the role of the periodic actuation mechanisms on the boundary layer of a SD7003 airfoil at \(Re=U_{\infty } C/\nu =6\times 10^4\). Here, Reynolds number is defined in terms of the free-stream velocity \(U_{\infty }\) and the airfoil chord C. The actuation is applied near the leading edge of the airfoil and is periodic in time and in the spanwise direction. The actuation successfully eliminates the laminar bubble at \(AoA=4^{\circ }\), however, it does not produce an increase in the airfoil aerodynamic efficiency. At angles of attack larger than the point of maximum lift, the actuation eliminates the massive flow separation, the flow being attached to the airfoil surface in a significant part of the airfoil chord. As a consequence, airfoil aerodynamic efficiency increases by a 124% with a reduction of the drag coefficient about 46%. This kind of technique seems to be promising at delaying flow separation and its associated losses when the angle of attack increases beyond the maximum lift for the baseline case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akbarzadeh, A., Borazjani, I.: A numerical study on controlling flow separation via surface morphing in the form of backward traveling waves. In: AIAA Aviation Forum, pp. 1–11 (2019)

  • Alam, M., Sandham, N.: Direct numerical simulation of short separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000)

    Article  MATH  Google Scholar 

  • Albers, M., Meysonnat, P.S., Schröder, W.: Actively reduced airfoil drag by transversal surface waves. Flow Turbul. Combust. 102(4), 865–886 (2019)

    Article  Google Scholar 

  • Amitay, M., Glezer, A.: Role of actuation frequency in controlled flow reattachment over a stalled airfoil. AIAA J. 40(2), 209–216 (2002)

    Article  Google Scholar 

  • Amitay, M., Smith, D.R., Kibens, V., Parekh, D.E., Glezer, A.: Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J. 39(3), 361–370 (2001)

    Article  Google Scholar 

  • Atzori, M., Vinuesa, R., Stroh, A., Frohnapfel, B., Schlatter, P.: Assessment of skin-friction-reduction techniques on a turbulent wing section. In: ETMM-12 2018 (2018)

  • Boutilier, M.S.H., Yarusevych, S.: Parametric study of separation and transition characteristics over an airfoil at low Reynolds numbers. Exp. Fluids 52(6), 1491–1506 (2012)

    Article  Google Scholar 

  • Buchmann, N.A., Atkinson, C., Soria, J.: Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil. Exp. Fluids 54(3), 1–14 (2013)

    Article  Google Scholar 

  • Calmet, H., Gambaruto, A.M., Bates, A.J., Vázquez, M., Houzeaux, G., Doorly, D.J.: Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput. Biol. Med. 69(1), 166–180 (2016)

    Article  Google Scholar 

  • Cattafesta, L.N., Sheplak, M.: Actuators for active flow control. Annu. Rev. Fluid Mech. 43(1), 247–272 (2011)

    Article  MATH  Google Scholar 

  • Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: On conservation laws of Navier–Stokes galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  • Choi, K.S., Timothy, J., Whalley, R.: Turbulent boundary-layer control with plasma actuators. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1940), 1443–1458 (2011)

    Article  Google Scholar 

  • Codina, R.: Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys. 130(1), 112–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Duvigneau, R., Visonneau, M.: Optimization of a synthetic jet actuator for aerodynamic stall control. Comput. Fluids 35(6), 624–638 (2006)

    Article  MATH  Google Scholar 

  • Eto, K., Kondo, Y., Fukagata, K., Tokugawa, N.: Friction Drag Reduction on a Clark-Y Airfoil Using Uniform Blowing. https://doi.org/10.2514/6.2018-3374 (2018)

  • Galbraith, M., Visbal, M.: Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, pp. 1–17 (2008)

  • Gilarranz, J.L., Traub, L.W., Rediniotis, O.K.: A new class of synthetic jet actuators—part I: design, fabrication and bench top characterization. J. Fluids Eng. 127(2), 367 (2005a)

    Article  Google Scholar 

  • Gilarranz, J.L., Traub, L.W., Rediniotis, O.K.: A new class of synthetic jet actuators—part II: application to flow separation control. J. Fluids Eng. 127(2), 377 (2005b)

    Article  Google Scholar 

  • Glezer, A.: Some aspects of aerodynamic flow control using synthetic-jet actuation. Philos. Trans. R. Soc. A 369(1940), 1476–1494 (2011). https://doi.org/10.1098/rsta.2010.0374

    Article  Google Scholar 

  • Goodfellow, S.D., Yarusevych, S., Sullivan, P.E.: Momentum coefficient as a parameter for aerodynamic flow control with synthetic jets. AIAA J. 51(3), 623–631 (2013)

    Article  Google Scholar 

  • Gövert, S., Mira, D., Zavala-Ake, M., Kok, J., Vázquez, M., Houzeaux, G.: Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach. Int. J. Heat Mass Transf. 107, 882–894 (2017)

    Article  Google Scholar 

  • Hain, R., Kähler, C.J., Radespiel, R.: Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J. Fluid Mech. 630, 129–153 (2009)

    Article  MATH  Google Scholar 

  • Huang, L., Huang, P.G., LeBeau, R.P., Hauser, T.: Numerical study of blowing and suction control mechanism on NACA0012 airfoil. J. Aircr. 41(5), 1005–1013 (2004)

    Article  Google Scholar 

  • Hunt, J., Wray, A., Moin, P.: Eddies, Stream and Convergence Zones in Turbulent Flows. Technical Report CTR-S88, Center for Turbulent Research (1988)

  • Istvan, M.S., Yarusevych, S.: Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil. Exp. Fluids 59(3), 1–21 (2018). https://doi.org/10.1007/s00348-018-2511-6

    Article  Google Scholar 

  • Kim, J., Moin, P., Seifert, A.: Large-eddy simulation-based characterization of suction and oscillatory blowing fluidic actuator. AIAA J. 55(8), 2566–2579 (2017)

    Article  Google Scholar 

  • Kitsios, V., Cordier, L., Bonnet, J.-P., Ooi, a, Soria, J.: On the coherent structures and stability properties of a leading-edge separated aerofoil with turbulent recirculation. J. Fluid Mech. 683(2011), 395–416 (2011)

    Article  MATH  Google Scholar 

  • Lehmkuhl, O., Houzeaux, G., Owen, H., Chrysokentis, G., Rodriguez, I.: A low-dissipation finite element scheme for scale resolving simulations of turbulent flows. J. Comput. Phys. 390, 51–65 (2019)

    Article  MathSciNet  Google Scholar 

  • Liu, P.Q., Duan, H.S., Chen, J.Z., He, Y.W.: Numerical study of suction-blowing flow control technology for an airfoil. J. Aircr. 47(1), 229–239 (2010)

    Article  Google Scholar 

  • McCormick, D.C.: Boundary layer separation control with directed synthetic jets. In: 38th Aerospace Sciences Meeting & Exhibit, AIAA 2000-0519 (2000)

  • Mira, D., Zavala-Ake, M., Avila, M., Owen, H., Cajas, J.C., Vazquez, M., Houzeaux, G.: Heat transfer effects on a fully premixed methane impinging flame. Flow Turbul. Combust. 97(1), 339–361 (2016)

    Article  Google Scholar 

  • Mueller, T.J., DeLaurier, J.D.: Aerodynamics of small vehicles. Annu. Rev. Fluid Mech. 35(1), 89–111 (2003)

    Article  MATH  Google Scholar 

  • Ol, M., McAuliffe, B., Hanff, E., Scholz, U., Kähler, C.: Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. In: 35th AIAA Fluid Dynamics Conference and Exhibit (2005)

  • Pastrana, D., Cajas, J.C., Lehmkuhl, O., Rodríguez, I., Houzeaux, G.: Large-eddy simulations of the vortex-induced vibration of a low mass ratio two-degree-of-freedom circular cylinder at subcritical reynolds numbers. Comput. Fluids. 173, 118–132 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  • Polhamus, E.C.: A Survey of Reynolds Number and Wing Geometry Effects on Lift Characteristics in the Low Speed Stall Region, Technical Report (1996)

  • Rodríguez, I., Lehmkuhl, O., Borrell, R., Oliva, a: Direct numerical simulation of a NACA0012 in full stall. Int. J. Heat Fluid Flow 43, 194–203 (2013)

    Article  Google Scholar 

  • Rodriguez, I., Lehmkuhl, O., Soria, M., Gomez, S., Domınguez-Pumar, M., Kowalski, L.: Fluid dynamics and heat transfer in the wake of a sphere. Int. J. Heat Fluid Flow 76(C), 141–153 (2019)

    Article  Google Scholar 

  • Sandham, N.D.: Transitional separation bubbles and unsteady aspects of aerofoil stall. Aeronaut. J. 112(1133), 395–404 (2008)

    Article  Google Scholar 

  • Schmidt, S., Breuer, M.: Hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded internal and external flows. Comput. Fluids 96, 226–252 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Selig, M.S., Donovan, J.F., Fraser, D.B.: Airfoils at Low Speeds. Technical report, University of Illinois (1989)

  • Selig, M., Guglielmo, J.J., Broeren, A.P., Giguere, P.: Summary of Low-Speed Airfoil Data Summary of Low-Speed Airfoil Data. Technical report, University of Illinois (1995)

  • Trias, F.X., Lehmkuhl, O.: A self-adaptive strategy for the time integration of Navier–Stokes equations. Numer. Heat Transf. B 60(2), 116–134 (2011)

    Article  Google Scholar 

  • Tuck, A., Soria, J.: Separation control on a NACA 0015 airfoil using a 2D micro ZNMF jet. Aircr. Eng. Aerosp. Technol. 80(2), 175–180 (2008)

    Article  Google Scholar 

  • Vázquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Arís, R., Mira, D., Calmet, H., Cucchietti, F., Owen, H., Taha, A., Burness, E.D., Cela, J.M., Valero, M.: Alya: multiphysics engineering simulation toward exascale. J. Comput. Sci. 14, 15–27 (2016)

    Article  MathSciNet  Google Scholar 

  • Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)

    Article  MATH  Google Scholar 

  • You, D., Moin, P.: Active control of flow separation over an airfoil using synthetic jets. J. Fluids Struct. 24(8), 1349–1357 (2008)

    Article  Google Scholar 

  • Zheng, J., Cui, Y.D., Zhao, Z., Li, J.M., Khoo, B.C.: Flow separation control over a NACA 0015 airfoil using nanosecond-pulsed plasma actuator. AIAA J. 56(6), 2220–2234 (2018)

    Article  Google Scholar 

  • Zhu, H., Hao, W., Li, C., Ding, Q., Wu, B.: Application of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbines. Aerosp. Sci. Technol. 88, 468–480 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially financially supported by the Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (Ref. TRA2017-88508-R) and by European Union’s Horizon 2020 research and innovation programme (INFRAEDI-02-2018, EXCELLERAT—The European Centre Of Excellence For Engineering Applications H2020.). We also acknowledge Red Española de Surpercomputación (RES) for awarding us access to the MareNostrum IV machine based in Barcelona, Spain (Ref. FI-2018-2-0015 and FI-2018-3-0021).This work is also funded in part by the Coturb program of the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Lehmkuhl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, I., Lehmkuhl, O. & Borrell, R. Effects of the Actuation on the Boundary Layer of an Airfoil at Reynolds Number Re = 60000. Flow Turbulence Combust 105, 607–626 (2020). https://doi.org/10.1007/s10494-020-00160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00160-y

Keywords

Navigation