Skip to main content
Log in

Mechanisms of apoptosis after ischemia and reperfusion: Role of the renin-angiotensin system

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Background: Apoptosis plays a key role in the pathogenesis of cardiac diseases. We examined the influence of the renin-angiotensin system (RAS) on different regulators of apoptosis using an isolated hemoperfused working porcine heart model of acute ischemia (2 h), followed by reperfusion (4 h). Methods and Results: 23 porcine hearts were randomized to 5 groups: hemoperfused non-infarcted hearts (C), infarcted hearts (MI: R. circumflexus), infarcted hearts treated with quinaprilat (Q), infarcted hearts treated with angiotensin-I (Ang I), and infarcted hearts treated with angiotensin-I and quinaprilat (QA). Fas, Bax, bcl-2 and p53 proteins were increased in MI hearts and further elevated by Ang I. Quinaprilat reduced Bax and p53. Bcl-2 was elevated in Q and reduced in QA. An early upregulation of caspase-3 gene and protein expression was detected in MI and Ang I hearts compared to C. Q reduced caspase-3 gene expression, but had no effect on caspase-3 and Fas protein. Conclusions: These data suggest that the RAS plays a pivotal role in cardiac apoptosis which is the early and predominant form of death in myocardial infarction. Ischemia/reperfusion induces programmed cell death via extrinsic and intrinsic pathways. Early treatment with quinaprilat attenuated cardiomyocyte apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ang::

angiotensin

LV::

left ventricle

Q::

quinaprilat

MI::

infarct group.

References

  1. Bing OHL. Hypothesis: apoptosis may be a mechanism for the transition to heart failure in rats with chronic pressure overload. J Mol Cell Cardiol 1994; 26: 943–948.

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez M, Lucchesi BR, Schaper J. Apoptosis in myocardial infarction. Ann Med 2002; 34: 470–479.

    Article  CAS  PubMed  Google Scholar 

  3. Nitahara JA, Cheng W, Liu Y, et al. Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J Mol Cell Cardiol 1998; 30: 519–535.

    Article  CAS  PubMed  Google Scholar 

  4. Freude B, Master TN, Kostin S, Robicsek F, Schaper J. Cardiomyocyte apoptosis in acute and chronic conditions. Basic Res Cardiol 1998; 93: 85–89.

    Article  CAS  PubMed  Google Scholar 

  5. Chen C, Ma I, Linfert DR, et al. Myocardial cell death and apoptosis in hibernating myocardium. J Am Coll Cardiol 1997; 30: 1407–1412.

    Article  CAS  PubMed  Google Scholar 

  6. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994; 94: 1621–1628.

    CAS  PubMed  Google Scholar 

  7. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J. Apoptosis and myocardial infarction. Basic Res Cardiol 1998; 93: 8–12.

    Article  PubMed  Google Scholar 

  8. Holly TA, Drincic A, Byun Y, et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 1999; 31: 1709–1715.

    Article  CAS  PubMed  Google Scholar 

  9. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 1996; 94: 1506–1512.

    CAS  PubMed  Google Scholar 

  10. Cheng W, Kajstura J, Nitahara JA, et al. Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996; 226: 316–327.

    Article  CAS  PubMed  Google Scholar 

  11. Pierzchalski P, Reiss K, Cheng W, et al. p53 induces myocyte apoptosis via the activation of the renin-angiotensin system. Exp Cell Res 1997; 234: 57–65.

    Article  CAS  PubMed  Google Scholar 

  12. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human Bax gene. Cell 1995; 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  13. Kajstura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996; 74: 86–107.

    CAS  PubMed  Google Scholar 

  14. Leri A, Claudio PP, Li Q, et al. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the bcl-2-to Bax protein ratio in the cell. J Clin Invest 1998; 101: 1326–1342.

    CAS  PubMed  Google Scholar 

  15. Kajstura J, Cigola E, Malhotra A, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997; 29: 859–870.

    Article  CAS  PubMed  Google Scholar 

  16. Bialik S, Geenen DL, Sasson IE, et al. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 1997; 100: 1991–1999.

    Article  Google Scholar 

  17. Long X, Boluyt MO, Hipolito ML, et al. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 1997; 99: 2635–2643.

    CAS  PubMed  Google Scholar 

  18. Nogueira AC, Ast I, Patone G, Perschel FH, Grimm D, Paul M. Functional effects of acute coronary occlusion and catecholinergic stimuli on the isolated normothermic hemoperfused porcine heart. Clin Exp Hypertens 2003; 25: 235–255.

    Article  PubMed  Google Scholar 

  19. Kossmehl P, Schonberger J, Shakibaei M, et al. Increase of fibronectin and osteopontin in porcine hearts following ischemia and reperfusion. J Mol Med 2005; 83: 626–637.

    Article  CAS  PubMed  Google Scholar 

  20. Farquharson CAJ, Struthers AD. Gradual reactivation over time of vascular tissue Angiotensin I to Angiotensin II conversion during chronic lisinopril therapy in chronic heart failure. JACC 2002; 39: 767–775.

    CAS  PubMed  Google Scholar 

  21. Mitrovic V, Mudra H, Bonzel T, Schmidt W, Schlepper M. Hemodynamic and humeral effects of parental therapy with intravenously administered ACE inhibitor quinaprilat in patients with advanced heart failure. Z Kardiol 1996; 85: 823–838.

    Google Scholar 

  22. Lazar HL, Bao Y, Rivers S, Colton T, Bernard SA. High tissue affinity angiotensin-converting enzyme inhibitors improve endothelial function and reduce infarct size. Ann Thorac Surg 2001; 72: 548–554.

    Article  CAS  PubMed  Google Scholar 

  23. Danser AH, van Kats JP, Admiraal PJ, et al. Cardiac renin and angiotensins. Uptake from plasma versus in situ synthesis. Hypertension 1994; 24: 37–48.

    CAS  PubMed  Google Scholar 

  24. van Kats JP, de Lannoy LM, Jan Danser AH, van Meegen JR, Verdouw PD, Schalekamp MA. Angiotensin II type 1 (AT1) receptor-mediated accumulation of angiotensin II in tissues and its intracellular half-life in vivo. Hypertension 1997; 30: 42–49.

    PubMed  Google Scholar 

  25. Grimm D, Huber M, Jabusch HC, et al. Extracellular matrix proteins in cardiac fibroblasts derived from rat hearts with chronic pressure-overload: effects of beta-receptor blockade. J Mol Cell Cardiol 2001; 33: 487–501.

    Article  CAS  PubMed  Google Scholar 

  26. Rothermund L, Kreutz R, Kossmehl P, et al. Early onset of chondroitin sulfate and OPN expression in angiotensin II-dependent left ventricular hypertrophy. Am J Hypertens 2002; 15: 644–652.

    Article  CAS  PubMed  Google Scholar 

  27. Shakibaei M, Zimmermann B, Merker HJ. Changes in integrin expression during chondrogenesis in vitro: an immunomorphological study. J Histochem Cytochem 1995; 43: 1061–1069.

    CAS  PubMed  Google Scholar 

  28. Kossmehl P, Shakibaei M, Cogoli A, et al. Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology 2003; 144: 4172–4179.

    Article  CAS  PubMed  Google Scholar 

  29. van Kats JP, Duncker DJ, Haitsma DB, et al. Angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade prevent cardiac remodeling in pigs after myocardial infarction: role of tissue angiotensin II. Circulation 2000; 102: 1556–1563.

    PubMed  Google Scholar 

  30. Maulik N, Sasaki H, Addya S, Das DK. Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors. FEBS Lett 2000; 485: 7–12.

    Article  CAS  PubMed  Google Scholar 

  31. Yue TL, Ma XL, Wang X, et al. Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 1998; 82: 166–174.

    CAS  PubMed  Google Scholar 

  32. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996; 79: 949–956.

    CAS  PubMed  Google Scholar 

  33. Cleutjens JPM, Blankesteijn WM, Daemen MJAP, Smits JFM. Review---The infarcted myocardium—simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res 1999; 44: 232–241.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao ZQ, Nakamura M, Wang NP, et al. Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 2000; 45: 651–660.

    Article  CAS  PubMed  Google Scholar 

  35. Biondi-Zoccai GG, Abbate A, Vasaturo F, et al. Increased apoptosis in remote non-infarcted myocardium in multivessel coronary disease. Int J Cardiol 2004; 94: 105–110.

    Article  PubMed  Google Scholar 

  36. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996; 28: 2005–2016.

    Article  CAS  PubMed  Google Scholar 

  37. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335: 1182–1189.

    Article  CAS  PubMed  Google Scholar 

  38. Okamura T, Miura T, Takemura G, et al. Effect of caspase inhibitors on myocardial infarct size and myocyte DNA fragmentation in the ischemia-reperfused rat heart. Cardiovasc Res 2000; 45: 642–650.

    Article  CAS  PubMed  Google Scholar 

  39. Wang LX, Ideishi M, Yahiro E, Urata H, Arakawa K, Saku K. Mechanism of the Cardioprotective Effect of Inhibition of the Renin-Angiotensin System on Ischemia/Reperfusion-Induced Myocardial Injury. Hypertens Res 2001; 24: 179–187.

    Article  CAS  PubMed  Google Scholar 

  40. Ruetten H, Badorff C, Ihling C, Zeiher AM, Dimmeler S. Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory Effects. JACC 2001; 38: 2063–2070.

    CAS  PubMed  Google Scholar 

  41. Odaka C, Mizuochi T. Angiotensin-converting enzyme inhibitor captopril prevents activation-induced apoptosis by interfering with T cell activation signals. Clin Exp Immuno. 2000; 121: 515–522.

    Article  CAS  Google Scholar 

  42. Tawa P, Hell K, Giroux A, et al. Catalytic activity of caspase-3 is required for its degradation: stabilization of the active complex by synthetic inhibitors. Cell Death Differ 2004; 11: 439–447.

    Article  CAS  PubMed  Google Scholar 

  43. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vitro. Am J Physiol Heart Circ Physiol 2003; 284: 456–463.

    Google Scholar 

  44. Tanaka M, Ito H, Adachi S, et al. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994; 75: 426–433.

    CAS  PubMed  Google Scholar 

  45. Jeremias I, Kupatt C, Martin-Villalba A, et al. Involvement of CD95/Apo1/Fas in Cell Death After Myocardial Ischemia. Circulation 2000; 102: 915–920.

    CAS  PubMed  Google Scholar 

  46. Wang R, Zagariya A, Ang E, Ibarra-Sunga O, Uhal BD. Fas-induced apoptosis of alveolar epithelial cells requires ANG II generation and receptor interaction. Am J Physiol 1999; 277: 1245–1250.

    Google Scholar 

  47. Krijnen PAJ, Nijmeijer R, Meijer CJLM, Visser CA, Hack CE, Niessen HWM. Apoptosis in myocardial ischemia and infarction. J Clin Pathol 2002; 55: 801–811.

    Article  CAS  PubMed  Google Scholar 

  48. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 1994; 54: 3131–3135.

    CAS  PubMed  Google Scholar 

  49. Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994; 9: 1799–1805.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Grimm.

Additional information

P. Kossmehl and E. Kurth contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kossmehl, P., Kurth, E., Faramarzi, S. et al. Mechanisms of apoptosis after ischemia and reperfusion: Role of the renin-angiotensin system. Apoptosis 11, 347–358 (2006). https://doi.org/10.1007/s10495-006-4350-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-4350-9

Keywords

Navigation