Skip to main content
Log in

Oligomerization of membrane-bound Bcl-2 is involved in its pore formation induced by tBid

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Both pro-apoptotic Bax and anti-apoptotic Bcl-2 are structurally homologous to the pore-forming domain of bacterial toxins. Bax proteins oligomerize in the mitochondrial outer membranes forming pores that release cytochrome c from the mitochondrial intermembrane space. Bcl-2 proteins also form pores that, however, are much smaller than the Bax pore. It is unknown whether Bcl-2 forms monomeric or oligomeric pores. Here, we characterized the Bcl-2 pore formation in liposomes using biophysical and biochemical techniques. The results show that the Bcl-2 pore enlarges as the concentration of Bcl-2 increases, suggesting that the pore is formed by Bcl-2 oligomers. As expected from oligomerization-mediated pore-formation, the small pores are formed earlier than the large ones. Bcl-2 oligomers form pores faster than the monomer, indicating that the oligomerization constitutes an intermediate step of the pore formation. A Bcl-2 mutant with higher affinity for oligomerization forms pores faster than wild type Bcl-2. Bcl-2 oligomers were detected in the liposomal membranes under conditions that Bcl-2 forms pores, and the extent of oligomerization was positively correlated with the pore-forming activity. Therefore, Bcl-2 oligomerizes in membranes forming pores, but the extent of oligomerization and the size of the resulting pores are much smaller than that of Bax, supporting the model that Bcl-2 is a defective Bax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  PubMed  CAS  Google Scholar 

  2. Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406

    Article  PubMed  CAS  Google Scholar 

  3. Petros AM, Medek A, Nettesheim DG et al (2001) Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci USA 98:3012–3017

    Article  PubMed  CAS  Google Scholar 

  4. Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654

    Article  PubMed  CAS  Google Scholar 

  5. Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G (1999) Solution structure of Bid, an intracellular amplifier of apoptotic signaling. Cell 96:615–624

    Article  PubMed  CAS  Google Scholar 

  6. Choe S, Bennett MJ, Fujii G et al (1992) The crystal structure of diphtheria toxin. Nature 357:216–222

    Article  PubMed  CAS  Google Scholar 

  7. Parker MW, Postma JP, Pattus F, Tucker AD, Tsernoglou D (1992) Refined structure of the pore-forming domain of colicin a at 2.4 a resolution. J Mol Biol 224:639–657

    Article  PubMed  CAS  Google Scholar 

  8. Antonsson B, Conti F, Ciavatta A et al (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    Article  PubMed  CAS  Google Scholar 

  9. Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC (1997) Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 94:5113–5118

    Article  PubMed  CAS  Google Scholar 

  10. Schlesinger PH, Gross A, Yin XM et al (1997) Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic Bcl-2. Proc Nat Acad Sci USA 94:11357–11362

    Article  PubMed  CAS  Google Scholar 

  11. Schendel SL, Azimov R, Pawlowski K, Godzik A, Kagan BL, Reed JC (1999) Ion channel activity of the BH3 only Bcl-2 family member: BID. J Biol Chem 274:21932–21936

    Article  PubMed  CAS  Google Scholar 

  12. Kuwana T, Mackey MR, Perkins G et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  PubMed  CAS  Google Scholar 

  13. Dlugosz PJ, Billen LP, Annis MG et al (2006) Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 25:2287–2296

    Article  PubMed  CAS  Google Scholar 

  14. Peng J, Tan C, Roberts GJ et al (2006) tBid elicits a conformational alteration in membrane-bound Bcl-2 such that it inhibits Bax pore formation. J Biol Chem 281:35802–35811

    Article  PubMed  CAS  Google Scholar 

  15. Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release in mitochondria. Biochem J 345:271–278

    Article  PubMed  CAS  Google Scholar 

  16. Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935

    Article  PubMed  CAS  Google Scholar 

  17. Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276:11615–11623

    Article  PubMed  CAS  Google Scholar 

  18. Sharpe JC, London E (1999) Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: probable relationship to oligomerization. J Membrane Biol 171:209–221

    Article  CAS  Google Scholar 

  19. Zakharov SD, Cramer WA (2002) Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta 1565:333–346

    Article  PubMed  CAS  Google Scholar 

  20. Conus S, Kaufmann T, Fellay I, Otter I, Rosse T, Borner C (2000) Bcl-2 is a monomeric protein: prevention of homodimerization by structural constraints. EMBO J 19:1534–1544

    Article  PubMed  CAS  Google Scholar 

  21. Yin XM, Oltvai ZN, Korsmeyer SJ (1994) BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321–323

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Z, Lapolla SM, Annis MG et al (2004) Bcl-2 homodimerization involves two distinct binding surfaces, a topographic arrangement that provides an effective mechanism for Bcl-2 to capture activated Bax. J Biol Chem 279:43920–43928

    Article  PubMed  CAS  Google Scholar 

  23. Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278:48935–48941

    Article  PubMed  CAS  Google Scholar 

  24. Tan C, Dlugosz PJ, Peng J et al (2006) Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. J Biol Chem 281:14764–14775

    Article  PubMed  CAS  Google Scholar 

  25. Hsu YT, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273:10777–10783

    Article  PubMed  CAS  Google Scholar 

  26. Hsu YT, Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272:13829–13834

    Article  PubMed  CAS  Google Scholar 

  27. Janiak F, Leber B, Andrews DW (1994) Assembly of Bcl-2 into microsomal and outer mitochondrial membranes. J Biol Chem 269:9842–9849

    PubMed  CAS  Google Scholar 

  28. Tsujimoto Y, Ikegaki N, Croce CM (1987) Characterization of the protein product of bcl-2, the gene involved in human follicular lymphoma. Oncogene 2:3–7

    PubMed  CAS  Google Scholar 

  29. Chen-Levy Z, Nourse J, Cleary ML (1989) The bcl-2 candidate proto-oncogene product is a 24-kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14;18) translocation. Mol Cell Biol 9:701–710

    PubMed  CAS  Google Scholar 

  30. Kim PK, Annis MG, Dlugosz PJ, Leber B, Andrews DW (2004) During apoptosis bcl-2 changes membrane topology at both the endoplasmic reticulum and mitochondria. Mol Cell 14:523–529

    Article  PubMed  CAS  Google Scholar 

  31. Wang Y, Malenbaum SE, Kachel K, Zhan H, Collier RJ, London E (1997) Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. J Biol Chem 272:25091–25098

    Article  PubMed  CAS  Google Scholar 

  32. Papini E, Schiavo G, Tomasi M, Colombatti M, Rappuoli R, Montecucco C (1987) Lipid interaction of diphtheria toxin and mutants with altered fragment B. 2. Hydrophobic photolabelling and cell intoxication. Eur J Biochem 169:637–644

    Article  PubMed  CAS  Google Scholar 

  33. Peterson AA, Cramer WA (1987) Voltage-dependent, monomeric channel activity of colicin E1 in artificial membrane vesicles. J Membr Biol 99:197–204

    Article  PubMed  CAS  Google Scholar 

  34. Leber B, Lin J, Andrews DW (2007) Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12:897–911

    Article  PubMed  CAS  Google Scholar 

  35. Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW (2008) Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol 6:e147

    Article  PubMed  Google Scholar 

  36. Lin B, Kolluri SK, Lin F et al (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116:527–540

    Article  PubMed  CAS  Google Scholar 

  37. Kolluri SK, Zhu X, Zhou X et al (2008) A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell 14:285–298

    Article  PubMed  CAS  Google Scholar 

  38. Kirsch DG, Doseff A, Chau BN et al (1999) Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 274:21155–21161

    Article  PubMed  CAS  Google Scholar 

  39. Basanez G, Zhang J, Chau BN et al (2001) Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J Biol Chem 276:31083–31091

    Article  PubMed  CAS  Google Scholar 

  40. Shinoura N, Yoshida Y, Nishimura M et al (1999) Expression level of Bcl-2 determines anti- or proapoptotic function. Cancer Res 59:4119–4128

    PubMed  CAS  Google Scholar 

  41. Wang NS, Unkila MT, Reineks EZ, Distelhorst CW (2001) Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. J Biol Chem 276:44117–44128

    Article  PubMed  CAS  Google Scholar 

  42. Reed JC (2008) Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood 111:3322–3330

    Article  PubMed  CAS  Google Scholar 

  43. O’Neill J, Manion M, Schwartz P, Hockenbery DM (2004) Promises and challenges of targeting Bcl-2 anti-apoptotic proteins for cancer therapy. Biochim Biophys Acta 1705:43–51

    PubMed  Google Scholar 

  44. Labi V, Grespi F, Baumgartner F, Villunger A (2008) Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ 15:977–987

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grant GM062964 from the National Institutes of Health to J. L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialing Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Ding, J., Tan, C. et al. Oligomerization of membrane-bound Bcl-2 is involved in its pore formation induced by tBid. Apoptosis 14, 1145–1153 (2009). https://doi.org/10.1007/s10495-009-0389-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0389-8

Keywords

Navigation