Skip to main content

Advertisement

Log in

CHOP deletion does not impact the development of diabetes but suppresses the early production of insulin autoantibody in the NOD mouse

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

C/EBP homologous protein (CHOP) has been proposed as a key transcription factor for endoplasmic reticulum (ER) stress-mediated β-cell death induced by inflammatory cytokines in vitro. However, the contribution of CHOP induction to the pathogenesis of type 1 diabetes is not yet clear. To evaluate the relevance of CHOP in the pathogenesis of type 1 diabetes in vivo, we generated CHOP-deficient non-obese diabetic (NOD.Chop −/−) mice. CHOP deficiency did not affect the development of insulitis and diabetes and apoptosis in β-cells. Interestingly, NOD.Chop −/− mice exhibited a delayed appearance of insulin autoantibodies compared to wild-type (wt) mice. Adoptive transfer with the diabetogenic, whole or CD8+-depleted splenocytes induced β-cell apoptosis and the rapid onset of diabetes in the irradiated NOD.Chop −/− recipients with similar kinetics as in wt mice. Expression of ER stress-associated genes was not significantly up-regulated in the islets from NOD.Chop −/− compared to those from wt mice or NOD-scid mice. These findings suggest that CHOP expression is independent of the development of insulitis and diabetes but might affect the early production of insulin autoantibodies in the NOD mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eisenbarth GS (1986) Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314:1360–1368

    Article  PubMed  CAS  Google Scholar 

  2. Chervonsky AV, Wang Y, Wong FS, Visintin I, Flavell RA, Janeway CA, Matis LA (1997) The role of Fas in autoimmune diabetes. Cell 89:17–24

    Article  PubMed  CAS  Google Scholar 

  3. Kagi D, Odermatt B, Seiler P, Zinkernagel RM, Mak TW, Hengartner H (1997) Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med 186:989–997

    Article  PubMed  CAS  Google Scholar 

  4. Rabinovitch A, Suarez-Pinzon WL (1998) Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol 55:1139–1149

    Article  PubMed  CAS  Google Scholar 

  5. Lee MS, Chang I, Kim S (2004) Death effectors of beta-cell apoptosis in type 1 diabetes. Mol Genet Metab 83:82–92

    Article  PubMed  CAS  Google Scholar 

  6. Ryan A, Murphy M, Godson C, Hickey FB (2009) Diabetes mellitus and apoptosis: inflammatory cells. Apoptosis 14:1435–1450

    Article  PubMed  CAS  Google Scholar 

  7. Thomas HE, McKenzie MD, Angstetra E, Campbell PD, Kay TW (2009) Beta cell apoptosis in diabetes. Apoptosis 14:1389–1404

    Article  PubMed  Google Scholar 

  8. Rabinovitch A, Suarez-Pinzon WL, Sorensen O, Bleackley RC (1996) Inducible nitric oxide synthase (iNOS) in pancreatic islets of nonobese diabetic mice. Identification of iNOS-expressing cells and relationships to cytokines expressed in the islets. Endocrinol 137:2093–2099

    Article  CAS  Google Scholar 

  9. Rabinovitch A, Suarez-Pinzon WL (2003) Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. Rev Endocr Metab Disord 4:291–299

    Article  PubMed  CAS  Google Scholar 

  10. Thomas HE, Darwiche R, Corbett JA, Kay TW (2002) Interleukin-1 plus gamma-interferon-induced pancreatic beta-cell dysfunction is mediated by beta-cell nitric oxide production. Diabetes 51:311–316

    Article  PubMed  CAS  Google Scholar 

  11. Corbett JA, McDaniel ML (1994) Reversibility of interleukin-1 beta-induced islet destruction and dysfunction by the inhibition of nitric oxide synthase. Biochem J 299:719–724

    PubMed  CAS  Google Scholar 

  12. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54:S97–S107

    Article  PubMed  CAS  Google Scholar 

  13. van der Kallen CJ, van Greevenbroek MM, Stehouwer CD, Schalkwijk CG (2009) Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis 14:1424–1434

    Article  PubMed  CAS  Google Scholar 

  14. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  PubMed  CAS  Google Scholar 

  15. Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13:374–384

    Article  PubMed  CAS  Google Scholar 

  16. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  17. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  PubMed  CAS  Google Scholar 

  18. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  PubMed  CAS  Google Scholar 

  19. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  20. Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7:335–345

    Article  PubMed  CAS  Google Scholar 

  21. Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25:406–409

    Article  PubMed  CAS  Google Scholar 

  22. Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, Rogers D, Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y, Permutt MA (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148

    Article  PubMed  CAS  Google Scholar 

  23. Takeda K, Inoue H, Tanizawa Y, Matsuzaki Y, Oba J, Watanabe Y, Shinoda K, Oka Y (2001) WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 10:477–484

    Article  PubMed  CAS  Google Scholar 

  24. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  Google Scholar 

  25. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763

    Article  PubMed  CAS  Google Scholar 

  26. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E, Mori M (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA 98:10845–10850

    Article  PubMed  CAS  Google Scholar 

  27. Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz A, Eizirik DL (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–461

    Article  PubMed  CAS  Google Scholar 

  28. Eizirik DL, Flodstrom M, Karlsen AE, Welsh N (1996) The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 39:875–890

    Article  PubMed  CAS  Google Scholar 

  29. Akerfeldt MC, Howes J, Chan JY, Stevens VA, Boubenna N, McGuire HM, King C, Biden TJ, Laybutt DR (2008) Cytokine-induced beta-cell death is independent of endoplasmic reticulum stress signaling. Diabetes 57:3034–3044

    Article  PubMed  CAS  Google Scholar 

  30. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  PubMed  CAS  Google Scholar 

  31. Yu L, Robles DT, Abiru N, Kaur P, Rewers M, Kelemen K, Eisenbarth GS (2000) Early expression of anti-insulin autoantibodies of man and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci USA 97:1701–1706

    Article  CAS  Google Scholar 

  32. Wicker LS, Miller BJ, Mullen Y (1986) Transfer of autoimmune diabetes mellitus with splenocytes from non-obese diabetic (NOD) mice. Diabetes 35(8):855–860

    Article  PubMed  CAS  Google Scholar 

  33. Christianson SW, Shultz LD, Leiter EH (1993) Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice: relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes 42:44–55

    Article  PubMed  CAS  Google Scholar 

  34. Ron D, Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6:439–453

    Article  PubMed  CAS  Google Scholar 

  35. Han XJ, Chae JK, Lee MJ, You KR, Lee BH, Kim DG (2005) Involvement of GADD153 and cardiac ankyrin repeat protein in hypoxia-induced apoptosis of H9c2 cells. J Biol Chem 280:23122–23129

    Article  PubMed  CAS  Google Scholar 

  36. Tang JR, Nakamura M, Okura T, Takata Y, Watanabe S, Yang ZH, Liu J, Kitami Y, Hiwada K (2002) Mechanism of oxidative stress-induced GADD153 gene expression in vascular smooth muscle cells. Biochem Biophys Res Commun 290:1255–1259

    Article  PubMed  CAS  Google Scholar 

  37. Guyton KZ, Xu Q, Holbrook NJ (1996) Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. Biochem J 314:547–554

    PubMed  CAS  Google Scholar 

  38. Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228

    Article  PubMed  CAS  Google Scholar 

  39. Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU (1985) Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res 4:110–125

    PubMed  CAS  Google Scholar 

  40. Ritzel RA, Butler PC (2003) Replication increases beta-cell vulnerability to human islet amyloid polypeptide-induced apoptosis. Diabetes 52:1701–1708

    Article  PubMed  CAS  Google Scholar 

  41. Marchetti P, Del Guerra S, Marselli L, Lupi R, Masini M, Pollera M, Bugliani M, Boggi U, Vistoli F, Mosca F, Del Prato S (2004) Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab 89:5535–5541

    Article  PubMed  CAS  Google Scholar 

  42. Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358:221–229

    Article  PubMed  CAS  Google Scholar 

  43. Meier JJ, Butler AE, Galasso R, Rizza RA, Butler PC (2006) Increased islet beta cell replication adjacent to intrapancreatic gastrinomas in humans. Diabetologia 49:2689–2696

    Article  PubMed  CAS  Google Scholar 

  44. Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 145:5087–5096

    Article  PubMed  CAS  Google Scholar 

  45. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147:3398–3407

    Article  PubMed  CAS  Google Scholar 

  46. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  PubMed  CAS  Google Scholar 

  47. Rhodes CJ (2005) Type 2 diabetes-a matter of beta-cell life and death? Science 307:380–384

    Article  PubMed  CAS  Google Scholar 

  48. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ (2008) Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 118:3378–3389

    Article  PubMed  CAS  Google Scholar 

  49. Ariyama Y, Tanaka Y, Shimizu H, Shimomura K, Okada S, Saito T, Yamada E, Oyadomari S, Mori M, Mori M (2008) The role of CHOP messenger RNA expression in the link between oxidative stress and apoptosis. Metabolism 57:1625–1635

    Article  PubMed  CAS  Google Scholar 

  50. Huang CJ, Lin CY, Haataja L, Gurlo T, Butler AE, Rizza RA, Butler PC (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56:2016–2027

    Article  PubMed  CAS  Google Scholar 

  51. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276:13935–13940

    PubMed  CAS  Google Scholar 

  52. Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133

    Article  PubMed  CAS  Google Scholar 

  53. Bonny C, Oberson A, Negri S, Sauser C, Schorderet DF (2001) Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes 50:77–82

    Article  PubMed  CAS  Google Scholar 

  54. Jaeschke A, Czech MP, Davis RJ (2004) An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev 18:1976–1980

    Article  PubMed  CAS  Google Scholar 

  55. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  PubMed  CAS  Google Scholar 

  56. Jaeschke A, Rincon M, Doran B, Reilly J, Neuberg D, Greiner DL, Shultz LD, Rossini AA, Flavell RA, Davis RJ (2005) Disruption of the Jnk2 (Mapk9) gene reduces destructive insulitis and diabetes in a mouse model of type I diabetes. Proc Natl Acad Sci USA 102:6931–6935

    Article  PubMed  CAS  Google Scholar 

  57. Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490

    Article  PubMed  CAS  Google Scholar 

  58. Iwahashi H, Hanafusa T, Eguchi Y, Nakajima H, Miyagawa J, Itoh N, Tomita K, Namba M, Kuwajima M, Noguchi T, Tsujimoto Y, Matsuzawa Y (1996) Cytokine-induced apoptotic cell death in a mouse pancreatic beta-cell line: inhibition by Bcl-2. Diabetologia 39:530–536

    Article  PubMed  CAS  Google Scholar 

  59. Rabinovitch A, Suarez-Pinzon W, Strynadka K, Ju Q, Edelstein D, Brownlee M, Korbutt GS, Rajotte RV (1999) Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects beta-cells from cytokine-induced destruction. Diabetes 48:1223–1229

    Article  PubMed  CAS  Google Scholar 

  60. Allison J, Thomas H, Beck D, Brady JL, Lew AM, Elefanty A, Kosaka H, Kay TW, Huang DC, Strasser A (2000) Transgenic overexpression of human Bcl-2 in islet beta cells inhibits apoptosis but does not prevent autoimmune destruction. Int Immunol 12:9–17

    Article  PubMed  CAS  Google Scholar 

  61. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307

    Article  PubMed  CAS  Google Scholar 

  62. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH (2003) Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4:321–329

    Article  PubMed  CAS  Google Scholar 

  63. Masciarelli S, Fra AM, Pengo N, Bertolotti M, Cenci S, Fagioli C, Ron D, Hendershot LM, Sitia R (2009) CHOP-independent apoptosis and pathway-selective induction of the UPR in developing plasma cells. Mol Immunol 29:29

    Google Scholar 

Download references

Acknowledgments

We would like to thank M. Motomura and Y. Kataoka for their technical assistance. This study was supported by research grants from the Japan Society for the Promotion of Science (#21591143, #22930032, #21790874, #22790865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Abiru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, T., Abiru, N., Kobayashi, M. et al. CHOP deletion does not impact the development of diabetes but suppresses the early production of insulin autoantibody in the NOD mouse. Apoptosis 16, 438–448 (2011). https://doi.org/10.1007/s10495-011-0576-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0576-2

Keywords

Navigation