Skip to main content

Advertisement

Log in

Cell death in human articular chondrocyte: a morpho-functional study in micromass model

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Chondrocyte death and loss of extracellular matrix are the central features in articular cartilage degeneration during osteoarthritis pathogenesis. Cartilage diseases and, in particular, osteoarthritis are widely correlated to apoptosis but, chondrocytes undergoing apoptosis “in vivo” more often display peculiar features that correspond to a distinct process of programmed cell death termed “chondroptosis”. Programmed cell death of primary human chondrocyte has been here investigated in micromasses, a tridimensional culture model, that represents a convenient means for studying chondrocyte biology. Cell death has been induced by different physical or chemical apoptotic agents, such as UVB radiation, hyperthermia and staurosporine delivered at both 1 and 3 weeks maturation. Conventional electron microscopy was used to analyse morphological changes. Occurrence of DNA fragmentation and caspase involvement were also investigated. At Transmission Electron Microscopy, control cells appear rounding or slightly elongated with plurilobated nucleus and diffusely dispersed chromatin. Typically UVB radiation and staurosporine induce chromatin apoptotic features, while hyperthermia triggers the “chondroptotic” phenotype. A weak TUNEL positivity appears in control, correlated to the well known cell death patterns occurring along cartilage differentiation. UVB radiation produces a strong positivity, mostly localized at the micromass periphery. After hyperthermia a higher number of fluorescent nuclei appears, in particular at 3 weeks. Staurosporine evidences a diffuse, but reduced, positivity. Therefore, DNA fragmentation is a common pattern in dying chondrocytes, both in apoptotic and “chondroptotic” cells. Moreover, all triggers induce caspase pathway activation, even if to a different extent, suggesting a fundamental role of apoptotic features, in chondrocyte cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Graph 1

Similar content being viewed by others

References

  1. Vos LM, Kuijer R, Huddleston Slater JJ, Stegenga B (2013) Alteration of cartilage degeneration and inflammation markers in temporomandibular joint osteoarthritis occurs proportionally. J Oral Maxillofac Surg 71:1659–1664

    Article  PubMed  Google Scholar 

  2. Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213:626–634

    Article  PubMed  CAS  Google Scholar 

  3. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthr Rheum 64:1697–1707

    Article  Google Scholar 

  4. Del Carlo M, Loeser RF Jr (2008) Cell death in osteoarthritis. Curr Rheumatol Rep 10:37–42

    Article  PubMed  Google Scholar 

  5. Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthr Res 3:107–113

    Article  CAS  Google Scholar 

  6. van der Kraan PM, van den Berg WB (2012) Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartilage 20:223–232

    Article  Google Scholar 

  7. Zamli Z, Sharif M (2011) Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int J Rheum Dis 14:159–166

    Article  PubMed  Google Scholar 

  8. Johnson EO, Charchandi A, Babis GC, Soucacos PN (2008) Apoptosis in osteoarthritis: morphology, mechanisms, and potential means for therapeutic intervention. J Surg Orthop Adv 17:147–152

    PubMed  Google Scholar 

  9. Olivotto E, Vitellozzi R, Fernandez P, Falcieri E, Battistelli M, Burattini S et al (2007) Chondrocyte hypertrophy and apoptosis induced by GROalpha require three-dimensional interaction with the extracellular matrix and a co-receptor role of chondroitin sulfate and are associated with the mitochondrial splicing variant of cathepsin B. J Cell Physiol 210:417–427

    Article  PubMed  CAS  Google Scholar 

  10. Thomas CM, Fuller CJ, Whittles CE, Sharif M (2011) Chondrocyte death by apoptosis is associated with the initiation and severity of articular cartilage degradation. Int J Rheum Dis 14:191–198

    Article  PubMed  Google Scholar 

  11. Roach HI, Aigner T, Kouri JB (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 9:265–277

    Article  PubMed  CAS  Google Scholar 

  12. Ruedel A, Hofmeister S, Bosserhoff AK (2013) Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells. Int J Clin Exp Pathol 6:3042–3048

    PubMed  PubMed Central  Google Scholar 

  13. Battistelli M, Borzi RM, Olivotto E, Vitellozzi R, Burattini S, Facchini A et al (2005) Cell and matrix morpho-functional analysis in chondrocyte micromasses. Microsc Res Tech 67:286–295

    Article  PubMed  Google Scholar 

  14. Kafienah W, Mistry S, Dickinson SC, Sims TJ, Learmonth I, Hollander AP (2007) Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthr Rheum 56:177–187

    Article  Google Scholar 

  15. Salucci S, Battistelli M, Burattini S, Squillace C, Canonico B, Gobbi P et al (2010) C2C12 myoblast sensitivity to different apoptotic chemical triggers. Micron 41:966–973

    Article  PubMed  CAS  Google Scholar 

  16. Dhumrongvaraporn A, Chanvorachote P (2013) Kinetics of ultraviolet B irradiation-mediated reactive oxygen species generation in human keratinocytes. J Cosmet Sci 64:207–217

    PubMed  CAS  Google Scholar 

  17. Luchetti F, Betti M, Canonico B, Arcangeletti M, Ferri P, Galli F et al (2009) ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells. Free Radic Biol Med 46:339–351

    Article  PubMed  CAS  Google Scholar 

  18. Pozzi D, Grimaldi P, Gaudenzi S, Di Giambattista L, Silvestri I, Morrone S et al (2007) UVB-radiation-induced apoptosis in Jurkat cells: a coordinated fourier transform infrared spectroscopy-flow cytometry study. Radiat Res 168:698–705

    Article  PubMed  CAS  Google Scholar 

  19. Salucci S, Burattini S, Battistelli M, Baldassarri V, Maltarello MC, Falcieri E (2012) Ultraviolet B (UVB) Irradiation-Induced Apoptosis in Various Cell Lineages in Vitro. Int J Mol Sci 14:532–546

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sandri M, El Meslemani AH, Sandri C, Schjerling P, Vissing K, Andersen JL et al (2001) Caspase 3 expression correlates with skeletal muscle apoptosis in Duchenne and facioscapulo human muscular dystrophy. A potential target for pharmacological treatment? J Neuropathol Exp Neurol 60:302–312

    PubMed  CAS  Google Scholar 

  21. Hilder TL, Carlson GM, Haystead TA, Krebs EG, Graves LM (2005) Caspase-3 dependent cleavage and activation of skeletal muscle phosphorylase b kinase. Mol Cell Biochem 275:233–242

    Article  PubMed  CAS  Google Scholar 

  22. Ji C, Yang B, Yang Z, Tu Y, Yang YL, He L et al (2012) Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway. Biochem Biophys Res Commun 425:825–829

    Article  PubMed  CAS  Google Scholar 

  23. D’Emilio A, Biagiotti L, Burattini S, Battistelli M, Canonico B, Evangelisti C et al (2010) Morphological and biochemical patterns in skeletal muscle apoptosis. Histol Histopathol 25:21–32

    PubMed  Google Scholar 

  24. Nys K, Van Laethem A, Michiels C, Rubio N, Piette JG, Garmyn M et al (2010) A p38(MAPK)/HIF-1 pathway initiated by UVB irradiation is required to induce Noxa and apoptosis of human keratinocytes. J Invest Dermatol 130:2269–2276

    Article  PubMed  CAS  Google Scholar 

  25. Kulms D, Schwarz T (2000) Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed 16:195–201

    Article  PubMed  CAS  Google Scholar 

  26. Svobodova AR, Galandakova A, Sianska J, Dolezal D, Lichnovska R, Ulrichova J et al (2012) DNA damage after acute exposure of mice skin to physiological doses of UVB and UVA light. Arch Dermatol Res 304:407–412

    Article  PubMed  CAS  Google Scholar 

  27. Caricchio R, McPhie L, Cohen PL (2003) Ultraviolet B radiation-induced cell death: critical role of ultraviolet dose in inflammation and lupus autoantigen redistribution. J Immunol 171:5778–5786

    Article  PubMed  CAS  Google Scholar 

  28. Heijkoop ST, van Doorn HC, Stalpers LJ, Boere IA, van der Velden J, Franckena M et al (2013) Results of concurrent chemotherapy and hyperthermia in patients with recurrent cervical cancer after previous chemoradiation. Int J Hyperthermia 30(1):6–10

    Article  PubMed  Google Scholar 

  29. Burattini S, Battistelli M, Falcieri E (2010) Morpho-functional features of in vitro cell death induced by physical agents. Curr Pharm Des 16:1376–1386

    Article  PubMed  CAS  Google Scholar 

  30. Abu-Yousif AO, Smith KA, Getsios S, Green KJ, Van Dross RT, Pelling JC (2008) Enhancement of UVB-induced apoptosis by apigenin in human keratinocytes and organotypic keratinocyte cultures. Cancer Res 68:3057–3065

    Article  PubMed  CAS  Google Scholar 

  31. Wang Z, Cai F, Chen X, Luo M, Hu L, Lu Y (2013) The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS ONE 8:e75044

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Chen F, Wang CC, Kim E, Harrison LE (2008) Hyperthermia in combination with oxidative stress induces autophagic cell death in HT-29 colon cancer cells. Cell Biol Int 32:715–723

    Article  PubMed  CAS  Google Scholar 

  33. Camara Y, Duval C, Sibille B, Villarroya F (2007) Activation of mitochondrial-driven apoptosis in skeletal muscle cells is not mediated by reactive oxygen species production. Int J Biochem Cell Biol 39:146–160

    Article  PubMed  CAS  Google Scholar 

  34. Milner PI, Wilkins RJ, Gibson JS (2007) The role of mitochondrial reactive oxygen species in pH regulation in articular chondrocytes. Osteoarthr Cartilage 15:735–742

    Article  CAS  Google Scholar 

  35. Dunai ZA, Imre G, Barna G, Korcsmaros T, Petak I, Bauer PI et al (2012) Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS ONE 7:e41945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Meggio F, Donella Deana A, Ruzzene M, Brunati AM, Cesaro L, Guerra B et al (1995) Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur J Biochem 234:317–322

    Article  PubMed  CAS  Google Scholar 

  37. Gescher A (2000) Staurosporine analogues - pharmacological toys or useful antitumour agents? Crit Rev Oncol Hematol 34:127–135

    Article  PubMed  CAS  Google Scholar 

  38. Murray MM, Bui T, Smith M, Bagheri-Yarmand R, Wingate H, Hunt KK et al (2013) Staurosporine is chemoprotective by inducing G1 arrest in a Chk1- and pRb-dependent manner. Carcinogenesis 34:2244–2252

    Article  PubMed  Google Scholar 

  39. McGahren-Murray M, Terry NH, Keyomarsi K (2006) The differential staurosporine-mediated G1 arrest in normal versus tumor cells is dependent on the retinoblastoma protein. Cancer Res 66:9744–9753

    Article  PubMed  CAS  Google Scholar 

  40. Chen X, Lowe M, Herliczek T, Hall MJ, Danes C, Lawrence DA et al (2000) Protection of normal proliferating cells against chemotherapy by staurosporine-mediated, selective, and reversible G(1) arrest. J Natl Cancer Inst 92:1999–2008

    Article  PubMed  CAS  Google Scholar 

  41. Battistelli M, Salucci S, Burattini S, Falcieri E (2013) Further considerations on in vitro skeletal muscle cell death. Muscles Ligaments Tendons J 3:267–274

    PubMed  PubMed Central  Google Scholar 

  42. Borzi RM, Olivotto E, Pagani S, Vitellozzi R, Neri S, Battistelli M et al (2010) Matrix metalloproteinase 13 loss associated with impaired extracellular matrix remodeling disrupts chondrocyte differentiation by concerted effects on multiple regulatory factors. Arthr Rheum 62:2370–2381

    Article  CAS  Google Scholar 

  43. Olivotto E, Borzi RM, Vitellozzi R, Pagani S, Facchini A, Battistelli M et al (2008) Differential requirements for IKKalpha and IKKbeta in the differentiation of primary human osteoarthritic chondrocytes. Arthr Rheum 58:227–239

    Article  CAS  Google Scholar 

  44. Stanic I, Facchini A, Borzi RM, Vitellozzi R, Stefanelli C, Goldring MB et al (2006) Polyamine depletion inhibits apoptosis following blocking of survival pathways in human chondrocytes stimulated by tumor necrosis factor-alpha. J Cell Physiol 206:138–146

    Article  PubMed  CAS  Google Scholar 

  45. Walker PR, Kokileva L, LeBlanc J, Sikorska M (1993) Detection of the initial stages of DNA fragmentation in apoptosis. Biotechniques 15:1032–1040

    PubMed  CAS  Google Scholar 

  46. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Borzi RM, Mazzetti I, Magagnoli G, Paoletti S, Uguccioni M, Gatti R et al (2002) Growth-related oncogene alpha induction of apoptosis in osteoarthritis chondrocytes. Arthr Rheum 46:3201–3211

    Article  CAS  Google Scholar 

  48. Karimi-Busheri F, Rasouli-Nia A, Mackey JR, Weinfeld M (2010) Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res 12:R31

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gibson G (1998) Active role of chondrocyte apoptosis in endochondral ossification. Microsc Res Tech 43:191–204

    Article  PubMed  CAS  Google Scholar 

  50. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM (2000) Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275:9390–9395

    Article  PubMed  CAS  Google Scholar 

  51. Mukae N, Enari M, Sakahira H, Fukuda Y, Inazawa J, Toh H et al (1998) Molecular cloning and characterization of human caspase-activated DNase. Proc Natl Acad Sci USA 95:9123–9128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Yang C, Li SW, Helminen HJ, Khillan JS, Bao Y, Prockop DJ (1997) Apoptosis of chondrocytes in transgenic mice lacking collagen II. Exp Cell Res 235:370–373

    Article  PubMed  CAS  Google Scholar 

  53. Murahashi H, Azuma H, Zamzami N, Furuya KJ, Ikebuchi K, Yamaguchi M et al (2003) Possible contribution of apoptosis-inducing factor (AIF) and reactive oxygen species (ROS) to UVB-induced caspase-independent cell death in the T cell line Jurkat. J Leukoc Biol 73:399–406

    Article  PubMed  CAS  Google Scholar 

  54. Nicolo C, Tomassini B, Rippo MR, Testi R (2001) UVB-induced apoptosis of human dendritic cells: contribution by caspase-dependent and caspase-independent pathways. Blood 97:1803–1808

    Article  PubMed  CAS  Google Scholar 

  55. Myakishev-Rempel M, Kuper J, Mintz B, Hutchinson S, Voris J, Zavislan K et al (2011) Investigation of the peak action wavelength of light-activated gene transduction. Gene Ther 18:1043–1051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Mauz-Korholz C, Dietzsch S, Schippel P, Banning U, Korholz D (2003) Molecular mechanisms of hyperthermia- and cisplatin-induced cytotoxicity in T cell leukemia. Anticancer Res 23:2643–2647

    PubMed  CAS  Google Scholar 

  57. Coustry F, Posey KL, Liu P, Alcorn JL, Hecht JT (2012) D469del-COMP retention in chondrocytes stimulates caspase-independent necroptosis. Am J Pathol 180:738–748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Perez HE, Luna MJ, Rojas ML, Kouri JB (2005) Chondroptosis: an immunohistochemical study of apoptosis and Golgi complex in chondrocytes from human osteoarthritic cartilage. Apoptosis 10:1105–1110

    Article  CAS  Google Scholar 

  59. Yamabe S, Hirose J, Uehara Y, Okada T, Okamoto N, Oka K et al (2013) Intracellular accumulation of advanced glycation end products induces apoptosis via endoplasmic reticulum stress in chondrocytes. FEBS J 280:1617–1629

    Article  PubMed  CAS  Google Scholar 

  60. Tomita M (2010) Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death. J Radiat Res 51:493–501

    Article  PubMed  CAS  Google Scholar 

  61. Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthr Rheum 62:791–801

    Article  CAS  Google Scholar 

  62. Sasaki H, Takayama K, Matsushita T, Ishida K, Kubo S, Matsumoto T et al (2012) Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthr Rheum 64:1920–1928

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Urbino University and MIUR PRIN 2009 (Michela Battistelli, Sara Salucci and Elisabetta Falcieri); CARISBO Foundation of Bologna, (Eleonora Olivotto, Stefania Pagani and Andrea Facchini); FIRB-MIUR, Grant RBAP10KCNS (Andrea Facchini, Annalisa Facchini, Flavio Flamigni and Rosa Maria Borzì); Fondi cinque per mille (Ministero della Salute,) (Andrea Facchini and Rosa Maria Borzì); POS-FESR 2007–2013, Emilia Romagna Region (EO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Battistelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battistelli, M., Salucci, S., Olivotto, E. et al. Cell death in human articular chondrocyte: a morpho-functional study in micromass model. Apoptosis 19, 1471–1483 (2014). https://doi.org/10.1007/s10495-014-1017-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1017-9

Keywords

Navigation