Skip to main content
Log in

Sediment Biogeochemistry of Mesophotic Meadows of Calcifying Macroalgae

  • Original Article
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Mesophotic (low light) sands were studied in Hawaiian coastal waters (39–204 m water depth) from O‘ahu to Kaho‘olawe by sampling inside and outside of extensive macroalgal meadows of chlorophytes Halimeda kanaloana and Udotea sp. during September 2004, December 2004, and November 2006. Porewater nutrient concentrations in these permeable sediments were comparable to those in nearshore sands and were highly elevated at sediment depths available to holdfasts of some algae (5–10 cm); maximum levels were 3.0 µM reactive phosphorus, 33 µM nitrate, 0.70 µM nitrite, 38 µM ammonium, and 130 µM silicic acid. Benthic material is calculated to be the major source of organic matter driving diagenesis in these sediments. Vegetated sediments appeared more oxidizing than unvegetated sediments, and the presence of macroalgae, particularly Halimeda, was generally associated with higher sediment dissolved inorganic carbon levels. Halimeda-vegetated sediments generally had low dissolved inorganic nitrogen (DIN) levels compared to the Udotea-vegetated and non-vegetated sediments, consistent with the net N loss indicated by sediment stoichiometric relationships. In contrast, Udotea-vegetated sediments showed minimal apparent algal DIN uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott IA, Huisman JM (2004) Marine green and brown algae of the Hawaiian Islands. Bishop Museum Press, Hawai‘i

    Google Scholar 

  • Agegian CR, Abbott IA (1985) Deep water macroalgal communities: a comparison between Penguin Bank (Hawaii) and Johnston Atoll. In: Harmelin VM, Salvat B, La Croix C, Gabrie C, Toffart JL (eds) Proceeding of the 5th international coral reef congress, vol 5. Antenne Museum-Ephe, Moorea

    Google Scholar 

  • Alford MH, Gregg MC, Merrifield MA (2006) Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J Phys Oceanogr 36:997–1018

    Article  Google Scholar 

  • Aponte NE, Ballantine DL (2001) Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep-Sea Res 48:2185–2194

    Article  Google Scholar 

  • Ascani F, Richards KJ, Firing E, Grant S, Johnson KS, Jia Y, Lukas R, Karl DM (2013) Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep-Sea Res 93:119–134

    Google Scholar 

  • Atkinson MJ, Smith SV (1983) C:N: P ratios of benthic marine plants. Limnol Oceanogr 28:568–574

    Article  Google Scholar 

  • Berner RA (1977) Stoichiometric models for nutrient regeneration in anoxic sediments. Limnol Oceanogr 22:781–786

    Article  Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the sea. Eldigio Press, Lamont-Doherty Geol Obs, New York

    Google Scholar 

  • Burdige DJ (2006) Geochemistry of marine sediments. Princeton University Press, New Jersey

    Google Scholar 

  • Canfield DE, Thamdrup B (2009) Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7:385–392

    Article  Google Scholar 

  • Colin PL (1986) Benthic community distribution in the Enewetak Atoll lagoon, Marshall Islands. Bull Mar Sci 38:129–143

    Google Scholar 

  • Davison IR, Stewart WDP (1983) Occurrence and significance of nitrogen transport in the brown alga Laminaria digitate. Mar Biol 77:107–112

    Article  Google Scholar 

  • Davison IR, Stewart WDP (1984) Studies on nitrate reductase activity in Laminaria digitata (Huds.) Lamour. I. Longitudinal and transverse profiles of nitrate reductase activity within the thallus. J Exp Mar Biol 74:201–210

    Article  Google Scholar 

  • Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sed Petrol 44:242–248

    Google Scholar 

  • Dickson AG, Goyet C (eds) (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, Version 2. ORNL/CDIAC-74 Oak Ridge National Lab, Tennessee

    Google Scholar 

  • Dore JE, Karl DM (1996) Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at Station ALOHA. Limnol Oceanogr 41:1619–1628

    Article  Google Scholar 

  • Drew EA, Abel KM (1988) Studies on Halimeda. I. The distribution and species composition of Halimeda meadows throughout the Great Barrier Reef Province. Coral Reefs 6:195–205

    Article  Google Scholar 

  • Drupp PS, De Carlo EH, Mackenzie FT (2016) Porewater CO2—carbonic acid system chemistry in permeable carbonate reef sands. Mar Chem 185:48–64. doi:10.1016/j.marchem.2016.04.004

    Article  Google Scholar 

  • Eiseman N, Blair S (1982) New records and range extensions of deepwater algae from East Flower Garden Bank, northwestern Gulf of Mexico. Contrib Mar Sci 25:21–26

    Google Scholar 

  • Erftemeijer PLA, Middleburg JJ (1993) Sediment-nutrient interactions in tropical seagrass beds: a comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi (Indonesia). Mar Ecol Prog Ser 102:187–198

    Article  Google Scholar 

  • Falter JL, Sansone FJ (2000a) Shallow pore water sampling in reef sediments. Coral Reefs 19:93–97

    Article  Google Scholar 

  • Falter JL, Sansone FJ (2000b) Hydraulic control of pore water geochemistry within the oxic-suboxic zone of a permeable sediment. Limnol Oceanogr 45:550–557

    Article  Google Scholar 

  • Fogaren KE, Sansone FJ, De Carlo EH (2013) Porewater temporal variability in a wave-impacted permeable sediment. Mar Chem 149:74–84

    Article  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartmann B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  Google Scholar 

  • Fukunaga A (2008) Invertebrate community associated with the macroalga Halimeda kanaloana meadow in Maui, Hawaii. Int Rev Hydrobiol 93:328–341

    Article  Google Scholar 

  • Graham JE, Wilcox LW, Graham LE (2008) Algae, 2nd edn. Benjamin Cummings, San Francisco

    Google Scholar 

  • Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem Cycles 11:235–266

    Article  Google Scholar 

  • Haberstroh PR, Sansone FJ (1999) Reef framework diagenesis across wave-flushed oxic-suboxic-anoxic transition zones. Coral Reefs 18:229–240

    Article  Google Scholar 

  • Hanisak MD, Blair SM (1988) The deep-water macroalgal community of the East Florida continental shelf (USA). Helgol Meeresunters 42:133–163

    Article  Google Scholar 

  • Hecky RE, Mopper K, Kilham P, Degens ET (1973) The amino acid and sugar composition of diatom cell-walls 19:323–331

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590

    Article  Google Scholar 

  • Hillis-Colinvaux L (1980) Ecology and taxonomy of Halimeda: primary producer of coral reefs. Adv Mar Biol 17:1–327

    Article  Google Scholar 

  • Jackson GA (1977) Nutrients and production of giant kelp, Macrocystis pyrifera, off southern California. Limnol Oceanogr 22:979–995

    Article  Google Scholar 

  • Kahng SE, Kelley CD (2007) Vertical zonation of megabenthic taxa on a deep photosynthetic reef (50–140 m) in the Au’au Channel, Hawaii. Coral Reefs 26:679–687

    Article  Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Karl DM (1999) A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2:181–214

    Article  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    Google Scholar 

  • Laws EA, Redalje DG, Haas LW, Bienfang PK, Eppley RW, Harrison WG, Karl DM, Marra J (1984) High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnol Oceanogr 29:1161–1169

    Article  Google Scholar 

  • Leichter JJ, Stokes MD, Genovese SJ (2008) Deep water macroalgal communities adjacent to the Florida Keys reef tract. Mar Ecol Prog Ser 356:123–138

    Article  Google Scholar 

  • Li YH, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38:703–714

    Article  Google Scholar 

  • Liddell W, Ohlhorst S (1988) Hard substrata community patterns, 1-120 M, North Jamaica. Palaios 3:413–423

    Article  Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227:57–59

    Article  Google Scholar 

  • Mackin JE, Aller RC (1984) Ammonium adsorption in marine sediments. Limnol Oceanogr 29:250–257

    Article  Google Scholar 

  • McRoy CP, McMillan C (1977) Productivity and physiological ecology of seagrasses. In: McRoy CP, Helfferich C (eds) Seagrass ecosystems: a scientific perspective. M. Dekker, New York, pp 53–88

    Google Scholar 

  • Milchakova NA, Evstigneeva IK, Tankovskaya IN (1999) Flora and bottom vegetation on the deep-water banks of the Mediterranean Sea. In: Malanotte-Rizzoli P, Eremeev VN (eds) The eastern Mediterranean as a laboratory basin for the assessment of contrasting ecosystems. Kluwer Academic Publ, Amsterdam, pp 423–430

    Chapter  Google Scholar 

  • Millero F, Huang F, Zhu X, Liu X, Zhang J-Z (2001) Adsorption and desorption of phosphate on calcite and aragonite in seawater. Aquatic Geochem 7:33–56

    Article  Google Scholar 

  • Müller WE, Wang X, Kropf K, Ushijima H, Geurtsen W, Eckert C, Tahir MN, Tremel W, Boreiko A, Schloßmacher U, Li J (2008) Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. J Struct Biol 161:188–203

    Article  Google Scholar 

  • Norris JN, Olsen JL (1991) Deep-water green algae from the Bahamas, including Cladophora vandenhoekii sp. nov. (Cladophorales). Phycologia 30:315–328

    Article  Google Scholar 

  • Olson JB, Kellogg CA (2010) Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol Ecol 73:17–30

    Article  Google Scholar 

  • Parrish FA, Boland RC (2004) Habitat and reef-fish assemblages of banks in the Northwestern Hawaiian Islands. Mar Biol 144:1065–1073

    Article  Google Scholar 

  • Perdue EM, Koprivnjak JF (2007) Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuar Coast Shelf Sci 73:65–72

    Article  Google Scholar 

  • Peyton KA (2009) Aquatic invasive species impacts in Hawaiian soft sediment habitats. Dissertation, University of Hawaii at Mānoa

  • Rebreanu L, Vanderborght J-P, Chou L (2008) The diffusion coefficient of dissolved silica revisited. Mar Chem 112:230–233

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MH (ed) The sea, vol 2. Wiley, New York, pp 26–77

    Google Scholar 

  • Rooney J, Donham E, Montgomery A, Spalding H, Parrish F, Boland R, Fenner D, Gove J, Vetter O (2010) Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29:361–367

    Article  Google Scholar 

  • Ruttenberg KC, Berner RA (1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim Cosmochim Acta 57:991–1007

    Article  Google Scholar 

  • Sansone FJ, Smith SV, Price JM, Walsh TW, Daniel TH, Andrews CC (1988) Long-term variation in seawater composition at the base of the thermocline. Nature 332:714–717

    Article  Google Scholar 

  • Sansone FJ, Spalding HL, Smith CM (2008) Submersible-operated porewater sampler for sandy sediments. Limnol Oceanogr: Methods 6:119–125

    Article  Google Scholar 

  • Schmitz K, Srivastava LM (1979) Long distance transport in Macrocystis integrifolia I. Translocation of 14C-labeled assimilates. Plant Physiol 63:995–1002

    Article  Google Scholar 

  • Searles RB, Schneider CW (1980) Biogeographic affinities of the shallow and deep water benthic marine algae of North Carolina. Bull Mar Sci 30:732–736

    Google Scholar 

  • Sevadjian JC, McManus MA, Benoit-Bird KJ, Selph KE (2012) Shoreward advection of phytoplankton and vertical re-distribution of zooplankton by episodic near-bottom water pulses on an insular shelf: Oahu, Hawaii. Cont Shelf Res 50–51:1–15

    Article  Google Scholar 

  • Shaw TJ, Emerson S, Windom HL (2016) From deep sea pore water to coastal permeable sediments-contributions that cover the oceans: a tribute to Rick and Debbie Jahnke. Aquat Geochem 22:391–399 (Special issue)

    Article  Google Scholar 

  • Spalding HL (2012) Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the Main Hawaiian Islands. Dissertation, University of Hawai‘i at Mānoa

  • Spalding H, Foster MS, Heine JN (2003) Composition, distribution, and abundance of deep-water (> 30 m) macroalgae in Central California. J Phycol 39:273–284

    Article  Google Scholar 

  • Spalding HL, Conklin KY, Smith CM, O’Kelly CJ, Sherwood AR (2016) New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian Archipelago. J Phycol 52:40–53

    Article  Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318

    Article  Google Scholar 

  • Topinka JA (1978) Nitrogen uptake by Fucus spiralis (Phaeophyceae). J Phycol 14:241–247

    Article  Google Scholar 

  • Treguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Queguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379

    Article  Google Scholar 

  • Tribble GW, Sansone FJ, Smith SV (1990) Stoichiometric modeling of carbon diagenesis within a coral reef framework. Geochim Cosmochim Acta 54:2439–2449

    Article  Google Scholar 

  • Van Raaphorst W, Malschaert JFP (1996) Ammonium adsorption in superficial North Sea sediments. Cont Shelf Res 16:1415–1435

    Article  Google Scholar 

  • Verbruggen H, De Clerck O, N’Yeurt ADR, Spalding H, Vroom PS (2006) Phylogeny and taxonomy of Halimeda incrassata, including the description of H. kanaloana and H. heteromorpha spp. nov. (Bryopsidales, Chlorophyta). European J Phycol 41:337–362

    Article  Google Scholar 

  • Vroom PS, Smith CM (2001) The challenge of siphonous green algae. Am Sci 89:321–335

    Article  Google Scholar 

  • Westley MB, Yamagishi H, Popp BN, Yoshida N (2006) Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomer distributions. Deep-Sea Res II 53:1802–1816

    Article  Google Scholar 

  • Williams SL (1984a) Uptake of sediment ammonium and translocation in a marine green macroalga Caulerpa cupressoides. Limnol Oceanogr 29:374–379

    Article  Google Scholar 

  • Williams SL (1984b) Decomposition of the tropical macroalga Caulerpa cupressoides (West) C. Agardh: field and laboratory studies. J Exp Mar Biol Ecol 80:109–124

    Article  Google Scholar 

  • Williams SL (1988) Disturbance and recovery of a deep-water Caribbean seagrass bed. Mar Ecol Prog Ser 42:63–71

    Article  Google Scholar 

  • Williams SL, Fisher TR (1985) Kinetics of nitrogen-15 labeled ammonium uptake by Caulerpa cupressoides (Chlorophyta). J Phycol 21:287–296

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the U.S. National Oceanic and Atmospheric Administration (NOAA), Ocean Exploration Program (NA04OAR4300143 to C.M.S.), the NOAA Undersea Research Program, Hawai’i Undersea Research Laboratory (HURL) (to C.M.S.), the NOAA Coral Reef Conservation Program (NA04OAR4600100 to C.M.S.), and the U.S. National Science Foundation (OCE-0327332, OCE-0536607, and OCE-1031947 to F.J.S.). We especially thank Terry Kerby and Max Cremer (HURL) for skillful submersible piloting and for cheerful tolerance of the very uncomfortably warm conditions of these dives, the rest of the HURL submersible and ROV crew, and the crew of the R/V Ka`imikai-o-Kanaloa. We also thank an anonymous reviewer, S.V. Smith, and K.E. Fogaren for suggestions that improved this manuscript; Iuri Herzfeld, Chris Colgrove, and Didier Dumas for laboratory analyses; and Matthew Ross for assistance with graphics. School of Ocean and Earth Science and Technology Contrib. No. 9988. Due to an untimely delay in the review process, this paper did not make the publication date for the special issue in tribute to Rick and Debbie Jankhe (Shaw et al. 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis J. Sansone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sansone, F.J., Spalding, H.L. & Smith, C.M. Sediment Biogeochemistry of Mesophotic Meadows of Calcifying Macroalgae. Aquat Geochem 23, 141–164 (2017). https://doi.org/10.1007/s10498-017-9315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-017-9315-9

Keywords

Navigation