Skip to main content
Log in

Impact of plasma sheath on rocket-based E-region ion measurements

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We model the particle velocity distribution functions around the entrance window of the Suprathermal Ion Imager (SII). The SII sensor was mounted on a 1 m boom carried by the scientific payload of NASA rocket 36.234 as part of Joule II mission to investigate Joule heating in the E-region ionosphere. The rocket flew above Northern Alaska on 19 January 2007. The payload was spin-stabilized with a period of 1.6 s, giving an apparent rotation of the ion flow velocity in the frame of reference of the payload. The SII sensor is an electrostatic analyzer that measures two dimensional slices of the distribution of the kinetic energies and arrival-angles of low energy ions. The study is concerned with the interpretation of data obtained from the SII sensor. For this purpose, we numerically investigate ram velocity effects on ions velocity distributions in the vicinity of the SII sensor aperture at an altitudes of approximately 150 km. The electrostatic sheath profiles surrounding the SII sensor, boom and payload are calculated numerically with the PIC code PTetra. It is observed that the direction of the ion flow velocity modifies the plasma sheath potential profile. This in turn impacts the velocity distributions of NO+ and \(\mathrm{O}_{2}^{+}\) ions at the aperture of the particle sensor. The velocity distribution functions at the sensor aperture are calculated by using test-particle modeling. These particle distribution functions are then used to inject particles in the sensor, and calculate the fluxes on the sensor microchannel plate (MCP), from which comparisons with the measurements can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Burchill, J.K., Clemmon, J.H., Knudsen, D.J., Larsen, M., Nicolls, M.J., Pfaff, R.F., Rowland, D., Sangalli, L.: J. Geophys. Res. 117 (2012)

  • Carlson, C., McFadden, J., Turin, P., Curtis, D., Magoncelli, A.: Space Sci. Rev. 98, 33–66 (2001)

    Article  ADS  Google Scholar 

  • Geuzaine, C., Remacle, J.-F.: Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    Article  Google Scholar 

  • Curran, D.B., Goertz, C.K., Whelan, T.A.: Geophys. Res. Lett. 14, 99–102 (1987)

    Article  ADS  Google Scholar 

  • Engwall, E., Eriksson, A.I., Forest, J.: Phys. Plasmas 13 (2006)

  • Geach, J., Shwartz, S.J., Genot, V., Moullard, O., Lahiff, A., Fazakerley, A.N.: Ann. Geophys. 23, 931–943 (2005)

    Article  ADS  Google Scholar 

  • Hundhausen, A., Asbridge, J., Bame, S., Gilbert, H., Strong, I.: J. Geophys. Res. 72, 87–100 (1967)

    Article  ADS  Google Scholar 

  • Knudsen, D.J., Burchill, J.K., Berg, K., Cameron, T., Enno, G.A., Marcellus, C.G., King, E.P., Wevers, I., King, R.A.: Rev. Sci. Instrum. 74, 202–211 (2003)

    Article  ADS  Google Scholar 

  • Mackay, F., Marchand, R., Kabin, K., Lu, J.Y.: J. Plasma Phys. 24, 301–318 (2008)

    ADS  Google Scholar 

  • Marchand, R.: Commun. Comput. Phys. 8, 471–483 (2010)

    Google Scholar 

  • Marchand, R., Burchill, J.K., Knudsen, D.J.: Space Sci. Rev. 156, 73–87 (2010)

    Article  ADS  Google Scholar 

  • Marchand, R.: IEEE Trans. Plasma Sci. 40 (2012)

  • Ogilvie, K., Chornay, D., Fritzenreiter, R., Hunsaker, F., Keller, J., Lobell, J., Miller, J., Scudder, J., Sittler, J.E.C., Torbert, R., Bodet, D., Needell, G., Lazarus, A., Steinberg, J., Tappan, J., Mavretic, A., Gergin, E.: Space Sci. Rev. 71, 55–77 (1995)

    Article  ADS  Google Scholar 

  • Olson, J., Milochn, W., Ratynskaia, S., Yaroshenko, V.: Phys. Plasmas 17 (2010)

  • Pfaff, R., Carlson, C., Watzin, J., Everett, D., Gruner, T.: Space Sci. Rev. 98 (2001)

  • Roussel, J.F., Rogier, F., Dufour, G., Matéo-Vélez, J.-C., Forest, J., Hilgers, A., Rodgers, D., Girard, C., Payan, D.: IEEE Trans. 36, 2360–2368 (2008)

    Google Scholar 

  • Roussel, J.F., Dufour, G., Matéo-Vélez, J.-C., Thiébault, B., Andersson, B., Rodgers, D., Hilgers, A., Payan, D.: IEEE Trans. Plasma Sci. 40 (2010)

  • Rehman, S., Burchill, J., Eriksson, A., Marchand, R.: Planet. Space Sci. 73, 145–150 (2012)

    Article  ADS  Google Scholar 

  • Sangalli, L., Knudsen, D.J., Larsen, M.F., Zhan, T., Pfaff, R.F., Rowland, D.: J. Geophys. Res. 114 (2009)

  • Guillemant, S.: PhD Dissertation (2014)

  • Yang, J., Chen, X.-X., Zhou, J., Xia, S.-H.: J. Astronaut. 31, 531–535 (2010)

    Google Scholar 

Download references

Acknowledgements

We thank D. Knudsen and R. Pfaff for providing data for this study. This work is supported by the Natural Sciences and Engineering Research Council of Canada. Support was also provided by the International Space Science Institute in Bern, Switzerland. The simulations presented in this work made use of the WestGrid computing facilities. N. Imtiaz acknowledge U of A for providing financial support under teaching and research assistantship program to complete this research. This work was done while N. Imtiaz was a graduate student at University of Alberta, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Imtiaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imtiaz, N., Burchill, J. & Marchand, R. Impact of plasma sheath on rocket-based E-region ion measurements. Astrophys Space Sci 355, 23–32 (2015). https://doi.org/10.1007/s10509-014-2150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-014-2150-1

Keywords

Navigation