Skip to main content
Log in

Estimates for the stiffness, strength and drift capacity of stone masonry walls based on 123 quasi-static cyclic tests reported in the literature

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This paper summarises 123 existing quasi-static shear–compression tests on stone masonry walls and evaluates the results to provide the input required for the displacement-based assessment of stone masonry buildings. Based on the collected data, existing criteria for estimating lateral strength and stiffness of stone masonry walls are reviewed and improvements proposed. The drift capacity of stone masonry walls is evaluated at six different limit states that characterise the response from the onset of cracking to the collapse of the wall. To provide input data for probabilistic assessments of stone masonry buildings, not only median values but also the corresponding coefficients of variation are determined. In addition, analytical expressions that estimate the ultimate drift capacity either as a function of masonry typology and failure mode or as a function of masonry typology, shear span and axial load ratio are proposed. The paper provides also estimates of the uncertainty related to the natural variability of stone masonry by analysing repeated tests and investigates the effect of mortar injections and the effect of the loading history (monotonic vs cyclic) on stiffness, strength and drift capacities. The data set is made publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. This database will be part of the European Masonry Database, which the authors are currently establishing in collaboration with Matija Gams (University of Ljubljana).

References

  • Almeida C, Guedes JP, Arêde A (2012) Shear and compression experimental behaviour of one leaf stone masonry walls. In: Proceedings of the 15th world conference on earthquake engineering. Lisbon, Portugal, pp 1–10

  • Almeida C, Arêde A, Guedes JP, Costa A (2014) Shear–compressive experimental behaviour of one-leaf stone masonry in north of Portugal. In: Second European conference on earthquake engineering and seismology. Istanbul, Turkey, pp 1–13

  • Angelillo M, Lourenço PB, Milani G (2014) Masonry behaviour and modelling. In: Angelillo M (ed) Mechanics of masonry structures. Springer, Vienna, pp 1–26

    Chapter  Google Scholar 

  • Benedetti D, Tomaževič M (1984) Sulla verifica sismica di costruzioni in muratura. Ing Sismica 1:9–16

    Google Scholar 

  • Beyer K, Mangalathu S (2012) Review of strength models for masonry spandrels. Bull Earthq Eng 11:521–542. doi:10.1007/s10518-012-9394-3

    Article  Google Scholar 

  • Beyer K, Petry S, Tondelli M, Paparo A (2014) Towards displacement-based seismic design of modern unreinforced masonry structures. In: Ansal A (ed) Perspectives on European earthquake engineering and seismology. Springer International Publishing, pp 401–428. doi:10.1007/978-3-319-07118-3

  • Binda L, Cardani G, Saisi A (2009) Caratterizzazione sperimentale della qualità muraria. In: Proceedings of the conference “Anidis 2009”. Italy, Bologna, pp 1–10

  • Borri A, De Maria A (2009) L’indice di qualità muraria (IQM): evoluzione e applicazione nell’ambito delle Norme Tecniche per le Costruzioni del 2008. In: Proceedings of the conference “Anidis 2009”. Italy, Bologna, pp 1–27

  • Borri A, Corradi M, Vignoli A (2001) Il problema della valutazione della resistenza a taglio della muratura mediante prove sperimentali. In: Proceedings of the conference “Anidis 2001”. Potenza–Matera, Italy, pp 1–11

  • Borri A, Paci G, De Maria A (2011) Resistenza a taglio delle murature: prove diagonali e correlazione con l’Indice di Qualità Muraria IQM. In: Proceedings of the conference “Anidis 2011”. Bari, Italy, pp 1–10

  • Borri A, Castori G, Corradi M (2012) Evaluation of shear strength of masonry panels through different experimental analyses. In: 14th Structural faults and repair. Edinburgh, Scotland, pp 1–13

  • Borri A, Corradi M, Castori G, De Maria A (2015) A method for the analysis and classification of historic masonry. Bull Earthq Eng 13:2647–2665. doi:10.1007/s10518-015-9731-4

    Article  Google Scholar 

  • Bosiljkov VZ, Totoev YZ, Nichols JM (2005) Shear modulus and stiffness of brickwork masonry: an experimental perspective. Struct Eng Mech 20:21–43. doi:10.12989/sem.2005.20.1.021

    Article  Google Scholar 

  • Cardani G, Binda L (2015) Guidelines for the evaluation of the load-bearing masonry quality in built heritage. In: Toniolo L, Boriani M, Guidi G (eds) Built heritage: monitoring conservation management. Springer International Publishing, pp 127–139. doi:10.1007/978-3-319-08533-3

  • CEN (2005a) EN 1998-3: 2005 Eurocode 8: design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. Comité Européen de Normalisation, Brussels, Belgium

  • CEN (2005b) EN 1996-1-1:2005 Eurocode 6: design of masonry structures—part 1-1: common rules for reinforced and unreinforced masonry structures. Comité Européen de Normalisation, Brussels, Belgium

  • CNR (2013) DT 212/2013: Istruzioni per la valutazione affidabilistica della sicurezza sismica di edifici esistenti. Brussels, Belgium

  • Corradi M, Borri A, Castori G, Sisti R (2014) Shear strengthening of wall panels through jacketing with cement mortar reinforced by GFRP grids. Compos Part B Eng 64:33–42. doi:10.1016/j.compositesb.2014.03.022

    Article  Google Scholar 

  • Costa AA, Arêde A, Costa A, Oliveira CS (2011) In situ cyclic tests on existing stone masonry walls and strengthening solutions. Earthq Eng Struct Dyn 40:449–471. doi:10.1002/eqe.1046

    Article  Google Scholar 

  • Costa AA, Penna A, Arêde A, Costa A (2015) Simulation of masonry out-of-plane failure modes by multi-body dynamics. Earthq Eng Struct Dyn 44:2529–2549. doi:10.1002/eqe.2596

    Article  Google Scholar 

  • D’Ayala D, Speranza E (2003) Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthq Spectra 19:479–509. doi:10.1193/1.1599896

    Article  Google Scholar 

  • Devaux M (2008) Seismic vulnerability of cultural heritage buildings in Switzerland. PhD thesis, EPFL, Lausanne, Switzerland

  • Doglioni F, Mirabella Roberti G, Bondanelli M (2009) Definizione della Linea di Minimo Tracciato come elemento per la qualifica dell’ingranamento nel piano e fuori dal piano, Prodotto finale Linea 1, progetto Reluis

  • Dolsek M (2009) Incremental dynamic analysis with consideration of modeling uncertainties. Earthq Eng Struct Dyn 38:805–825. doi:10.1002/eqe

    Article  Google Scholar 

  • Faella G, Manfredi G, Realfonzo R (1992) Cyclic behaviour of tuff masonry walls under horizontal loadings. In: 6th Canadian masonry symposium, Saskatoon, Canada, pp 1–11

  • Frumento S, Magenes G, Morandi P, Calvi GM (2009) Interpretation of experimental shear tests on clay brick masonry walls and evaluation of q-factors for seismic design. IUSS Press, Pavia

    Google Scholar 

  • Grammatikou S, Biskinis D, Fardis MN (2015) Strength, deformation capacity and failure modes of RC walls under cyclic loading. Bull Earthq Eng 13:3277–3300. doi:10.1007/s10518-015-9762-x

    Article  Google Scholar 

  • Grünthal G (1998) Macroseismic Scale 1992 (EMS-92). European seismological commission, sub commission on engineering seismology, working group macroseismic

  • Kržan M, Bosiljkov V (2012) Results of laboratory and in situ tests on masonry properties and tables with mechanical parameters to be adopted in numerical modelling, PERPETUATE Project, Deliverable D15, www.perpetuate.eu

  • Kržan M, Gostič S, Cattari S, Bosiljkov V (2015) Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bull Earthq Eng 13:203–236. doi:10.1007/s10518-014-9686-x

    Article  Google Scholar 

  • Lourenço PB (1996) Computational strategies for masonry structures. PhD thesis, Delft Univesity Press, Netherlands

  • Lourenço PB, Oliveira DV, Roca P, Orduña A (2005) Dry joint stone masonry walls subjected to in-plane combined loading. J Struct Eng 131:1665–1673. doi:10.1061/(ASCE)0733-9445(2005)131:11(1665)

    Article  Google Scholar 

  • Magenes G, Calvi GM (1997) In-plane seismic response of brick masonry walls. Earthq Eng Struct Dyn 26:1091–1112. doi:10.1002/(SICI)1096-9845(199711)26:11<1091:AID-EQE693>3.0.CO;2-6

    Article  Google Scholar 

  • Magenes G, Penna A, Galasco A, da Paré M (2010) In-plane cyclic shear tests of undressed double leaf stone masonry panels. In: 8th international masorny conference, Dresden, Germany, pp 1–10

  • Marcari G, Manfredi G, Prota A, Pecce M (2007) In-plane shear performance of masonry panels strengthened with FRP. Compos Part B Eng 38:887–901. doi:10.1016/j.compositesb.2006.11.004

    Article  Google Scholar 

  • Mazzon N (2010) Influence of grout injection on the dynamic behaviour of stone masonry buildings. PhD thesis, University of Padova, Italy

  • Mergos PE, Beyer K (2014) Loading protocols for European regions of low to moderate seismicity. Bull Earthq Eng 12:2507–2530. doi:10.1007/s10518-014-9603-3

    Article  Google Scholar 

  • Mihaylov BI, Hannewald P, Beyer K (2016) Three-parameter kinematic theory for shear-dominated reinforced concrete walls. J Struct Eng 142:4016041. doi:10.1061/(ASCE)ST.1943-541X.0001489

    Article  Google Scholar 

  • MIT (2009) Ministry of Infrastructures and Transportation, Circ. N. 617 of 2/2/2009: Istruzioni per l’applicazione delle nuove norme tecniche per le costruzioni di cui al Decreto Ministeriale 14 Gennaio 2008. Italy

  • NTC (2008) Decreto Ministeriale 14/1/2008: Norme tecniche per le costruzioni. Ministry of Infrastructures and Transportations, G.U.S.O. n.30 on 4/2/2008; Italy

  • Oliveira DV (2003) Experimental and numerical analysis of blocky masonry structures under cyclic loading. PhD thesis, University of Minho, Portugal

  • Penna A (2015) Seismic assessment of existing and strengthened stone-masonry buildings: critical issues and possible strategies. Bull Earthq Eng 13:1051–1071. doi:10.1007/s10518-014-9659-0

    Article  Google Scholar 

  • Petry S, Beyer K (2014a) Influence of boundary conditions and size effect on the drift capacity of URM walls. Eng Struct 65:76–88. doi:10.1016/j.engstruct.2014.01.048

    Article  Google Scholar 

  • Petry S, Beyer K (2014b) Limit states of modern unreinforced clay brick masonry walls subjected to in-plane loading. Bull Earthq Eng 1073–1095. doi:10.5281/zenodo.8443

  • Petry S, Beyer K (2015) Force–displacement response of in-plane-loaded URM walls with a dominating flexural mode. Earthq Eng Struct Dyn 44:2551–2573. doi:10.1002/eqe.2597

    Article  Google Scholar 

  • Pfyl-Lang K, Braune F, Lestuzzi P (2011) SIA D0237: Beurteilung von Mauerwerksgebäuden bezüglich Erdbeben (SIA D 0237: Evaluation de la sécurité parasismique des bâtiments en maçonnerie). Zürich, Switzerland

  • Pinho FFS, Lúcio VJG, Baião MFC (2012) Rubble stone masonry walls in Portugal strengthened with reinforced micro-concrete layers. Bull Earthq Eng 10:161–180. doi:10.1007/s10518-011-9280-4

    Article  Google Scholar 

  • Rosti A, Penna A, Rota M, Magenes G (2016) In-plane cyclic response of low-density AAC URM walls. Mater Struct 49:4785–4798. doi:10.1617/s11527-016-0825-5

    Article  Google Scholar 

  • Rota M, Penna A, Magenes G, Magenes G (2014) A framework for the seismic assessment of existing masonry buildings accounting for different sources of uncertainty. Earthq Eng Struct Dyn 43:1045–1066

    Article  Google Scholar 

  • Silva B (2012) Diagnosis and strengthening of historical masonry structures: numerical and experimental analysis. PhD thesis, University of Padova, Italy

  • Silva B, Guedes JM, Arêde A, Costa A (2012) Calibration and application of a continuum damage model on the simulation of stone masonry structures: Gondar church as a case study. Bull Earthq Eng 10:211–234. doi:10.1007/s10518-010-9216-4

    Article  Google Scholar 

  • Silva B, Dalla Benetta M, Da Porto F, Modena C (2014) Experimental assessment of in-plane behaviour of three-leaf stone masonry walls. Constr Build Mater 53:149–161. doi:10.1016/j.conbuildmat.2013.11.084

    Article  Google Scholar 

  • Tomaževič M (1999) Earthquake-resistant design of masonry buildings. Imperial College Press, London

    Google Scholar 

  • Tomaževič M (2007) Damage as a measure for earthquake-resistant design of masonry structures: Slovenian experience. Can J Civ Eng 34:1403–1412. doi:10.1139/L07-128

    Article  Google Scholar 

  • Turnšek V, Čačovič F (1971) Some experimental results on the strength of brick masonry walls. In: Proceedings of the 2nd international brick masonry conference. Stoke-on-Trent, England, pp 149–156

  • Vamvatsikos D, Fragiadakis M (2010) Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty. Earthq Eng Struct Dyn 141–163. doi:10.1002/eqe

  • Vasconcelos G (2005) Experimental investigations on the mechanics of stone masonry: characterization of granites and behavior of ancient masonry shear walls. PhD thesis, University of Minho, Portugal

  • Vasconcelos G, Lourenço PB (2009) In-Plane experimental behavior of stone masonry walls under cyclic loading. J Struct Eng 135:1269–1277. doi:10.1061/(ASCE)ST.1943-541X.0000053

    Article  Google Scholar 

  • Wilding BV, Beyer K (2017) Force–displacement response of in-plane loaded unreinforced brick masonry walls: the critical diagonal crack model. Bull Earthq Eng 15:2201–2244. doi:10.1007/s10518-016-0049-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was prepared as part of the Basel-Project, which is supported by the Swiss Federal Office of the Environment and the Construction Department of the Canton Basel-Stadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Beyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanin, F., Zaganelli, D., Penna, A. et al. Estimates for the stiffness, strength and drift capacity of stone masonry walls based on 123 quasi-static cyclic tests reported in the literature. Bull Earthquake Eng 15, 5435–5479 (2017). https://doi.org/10.1007/s10518-017-0188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-017-0188-5

Keywords

Navigation