Skip to main content
Log in

Methodological models for in vitro amplification and maintenance of human articular chondrocytes from elderly patients

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Articular cartilage defects, an exceedingly common problem closely correlated with advancing age, is characterized by lack of spontaneous resolution because of the limited regenerative capacity of adult articular chondrocytes. Medical and surgical therapies yield unsatisfactory short-lasting results. Recently, cultured autologous chondrocytes have been proposed as a source to promote repair of deep cartilage defects. Despite encouraging preliminary results, this approach is not yet routinely applicable in clinical practice, but for young patients. One critical points is the isolation and ex vivo expansion of large enough number of differentiated articular chondrocytes. In general, human articular chondrocytes grown in monolayer cultures tend to undergo dedifferentiation. This reversible process produces morphological changes by which cells acquire fibroblast-like features, loosing typical functional characteristics, such as the ability to synthesize type II collagen. The aim of this study was to isolate human articular chondrocytes from elderly patients and to carefully characterize their morphological, proliferative, and differentiative features. Cells were morphologically analyzed by optic and transmission electron microscopy (TEM). Production of periodic acid-schiff (PAS)-positive cellular products and of type II collagen mRNA was monitored at different cellular passages. Typical chondrocytic characteristics were also studied in a suspension culture system with cells encapsulated in alginate-polylysine-alginate (APA) membranes. Results showed that human articular chondrocytes can be expanded in monolayers for several passages, and then microencapsulated, retaining their morphological and functional characteristics. The results obtained could contribute to optimize expansion and redifferentiation sequences for applying cartilage tissue engineering in the elderly patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACTB:

Beta actin

AGC1:

Aggrecan 1

AMV:

Avian Myeloblastosis Virus

APA:

Alginate-polylysine-alginate

BGN:

Biglycan

CHES:

2-N-cyclohexylaminoethane sulfonic acid

COLIA1:

Type I alpha 1 collagen

COLIIA1:

Type II alpha 1 collagen

COLXA1:

Type X alpha 1 collagen

DCN:

Decorin

D-MEM:

Dulbecco’s modified Eagle’s medium

DT:

Doubling time

FCS:

Fetal calf serum

GAGs:

Glycosaminoglycans

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

OA:

Osteoarthritis

PAS:

Periodic acid-schiff

PBS:

Phosphate buffer saline

PCR:

Polymerase-chain reaction

RT:

Real time

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

TEM:

Transmission electron microscopy

References

  • Aigner T, Bertling W, Stoss H, Weseloh G, von der Mark K (1993) Independent expression of fibril-forming collagens I, II, and III in chondrocytes of human osteoarthritic cartilage. J Clin Invest 91:829–837

    Article  PubMed  CAS  Google Scholar 

  • Aigner T, Dudhia J (1997) Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis: a hypothesis. Ann Rheum Dis 56:287–291

    Article  PubMed  CAS  Google Scholar 

  • Benz K, Breit S, Lukoschek M, Mau H, Richter W (2002) Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes. Biochem Biophys Res Commun 293:284–292

    Article  PubMed  CAS  Google Scholar 

  • Bobacz K, Erlacher L, Smolen J, Soleiman A, Graninger WB (2004) Chondrocyte number and proteoglycan synthesis in the aging and osteoarthritic human articular cartilage. Ann Rheum Dis 63(12):1618–1622

    Article  PubMed  CAS  Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  PubMed  CAS  Google Scholar 

  • Buckwalter JA, Mankin HJ (1997) Articular cartilage. Part II: degeneration and osteoarthritis, repair, regeneration, and transplantation. J Bone Joint Surg 79:612–632

    Google Scholar 

  • Budinger L, Hertl M (2000) Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview. Allergy 55(2):108–115

    Article  PubMed  CAS  Google Scholar 

  • Chen FS, Frenkel SR, Di Cesare PE (1999) Repair of articular cartilage defects: Part I. Basic science of cartilage healing. Am J Orthop 28:31–33

    PubMed  CAS  Google Scholar 

  • De Ceuninck F, Lesur C, Pastoureau P, Caliez A, Sabatini M (2004) Culture of chondrocytes in alginate beads. Methods Mol Med 100:15–22

    PubMed  Google Scholar 

  • Dozin B, Malpeli M, Camardella L, Cancedda R, Pietrangelo A (2002) Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines: molecular and cellular aspects. Matrix Biol 21:449–459

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimmons JS, Sanyal A, Gonzalez C, Fukumoto T, Clemens VR, O’Driscoll SW, Reinholz GG (2004) Serum-free media for periosteal chondrogenesis in vitro. J Orthop Res 22:716–725

    Article  PubMed  CAS  Google Scholar 

  • Frenkel SR, Di Cesare PE (1999) Degradation and repair of articular cartilage. Front Biosci 4:D671–D685

    Article  PubMed  CAS  Google Scholar 

  • Fritz J, Gaissmaier C, Schewe B, Weise K (2005) Significance and technique of autologous chondrocyte transplantation. Zentralbl Chir 130(4):327–332

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, O’Driscoll SW (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 11:55–64

    Article  PubMed  CAS  Google Scholar 

  • Gawkrodger DJ (2003) Metal sensitivities and orthopaedic implants revisited: the potential for metal allergy with the new metal-on-metal joint prostheses. Br J Dermatol 148(6):1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Giannoni P, Pagano A, Maggi E, Arbico R, Randazzo N, Grandizio M, Cancedda R, Dozin B (2005) Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications. Osteoarthritis Cartilage 13:589–600

    Article  PubMed  CAS  Google Scholar 

  • Gibson GJ, Verner JJ, Nelson FR, Lin DL (2001) Degradation of the cartilage collagen matrix associated with changes in chondrocytes in osteoarthrosis. Assessment by loss of background fluorescence and immunodetection of matrix components. J Orthop Res 19:33–42

    Article  PubMed  CAS  Google Scholar 

  • Gillogly SD, Voight M, Blackburn T (1998) Treatment of articular cartilage defects of the knee with autologous chondrocytes implantation. J Orthop Sports Phys Ther 28:241–251

    PubMed  CAS  Google Scholar 

  • Grigolo B, Lisignoli G, Piacentini A, Fiorini M, Gobbi P, Mazzotti G, Duca M, Pavesio A, Facchini A (2002) Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials 23:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Grogan SP, Barbero A, Diaz-Romero J, Cleton-Jansen AM, Soeder S, Whiteside R, Hogendoorn PC, Farhadi J, Aigner T, Martin I, Mainil-Varlet P (2007) Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis Rheum 56(2):586–595

    Article  PubMed  Google Scholar 

  • Grunder T, Gaissmaier C, Fritz J, Stoop R, Hortschansky P, Mollenhauer J, Aicher WK (2004) Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 12(7):559–567

    Article  PubMed  Google Scholar 

  • Guo X, Wang C, Zhang Y, Xia R, Hu M, Duan C, Zhao Q, Dong L, Lu J, Qing SY (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 10:1818–1829

    Article  PubMed  CAS  Google Scholar 

  • Handa S, Dogra S, Prasad R (2003) Metal sensitivity in a patient with a total knee replacement. Contact Dermatitis 49(5):259–260

    Article  PubMed  Google Scholar 

  • Haddo O, Mahroof S, Higgs D, David L, Pringle J, Bayliss M, Cannon SR, Briggs TW (2004) The use of chondrogide membrane in autologous chondrocytes implantation. Knee 11:51–55

    Article  PubMed  Google Scholar 

  • Hasse C, Bohrer T, Barth P, Stinner B, Cohen R, Cramer H, Zimmermann U, Rothmund M (2000) Parathyroid xenotransplantation without immunosuppression in experimental hypoparathyroidism: long-term in vivo function following microencapsulation with a clinically suitable alginate. World J Surg 24:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Hauselmann HJ, Masuda K, Hunziker EB, Neidhart M, Mok SS, Michel BA, Thonar EJ (1996) Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. Am J Physiol 271:C742–C752

    PubMed  CAS  Google Scholar 

  • Homicz MR, Chia SH, Schumacher BL, Masuda K, Thonar EJ, Sah RL, Watson D (2003) Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture. Laryngoscope 113:25–32

    Article  PubMed  CAS  Google Scholar 

  • Huch K, Stove J, Puhl W, Gunther KP (2002) Review and comparison of culture techniques for articular chondrocytes. Z Orthop Ihre Grenzgeb 140:145–152

    Article  PubMed  CAS  Google Scholar 

  • Kamada H, Masuda K, D’Souza AL, Lenz ME, Pietryla D, Otten L, Thonar EJ (2002) Age-related differences in the accumulation and size of hyaluronan in alginate culture. Arch Biochem Biophys 408:192–199

    Article  PubMed  CAS  Google Scholar 

  • Kamishina H, Miyabayashi T, Clemmons RM, Farese JP, Uhl EW (2006) Three-dimensional culture of feline articular chondrocytes in alginate microspheres. J Vet Med Sci 68(11):1239–1242

    Article  PubMed  Google Scholar 

  • Kim BS, Yoo SP, Park HW (2004) Tissue engineering of cartilage with chondrocytes cultured in a chemically-defined, serum-free medium. Biotechnol Lett 26:709–712

    Article  PubMed  CAS  Google Scholar 

  • Klapperich C, Graham J, Pruitt L, Ries MD (1999) Failure of a metal-on-metal total hip arthroplasty from progressive osteolysis. J Arthroplasty 14(7):877–881

    Article  PubMed  CAS  Google Scholar 

  • Kurz B, Domm C, Jin M, Sellckau R, Schunke M (2004) Tissue engineering of articular cartilage under the influence of collagen I/III membranes and low oxygen tension. Tissue Eng 10:1277–1286

    PubMed  CAS  Google Scholar 

  • Lee DA, Reisler T, Bader BL (2003) Expansion of chondrocytes for tissue engineering in alginate beads enhances chondrocytic phenotype compared to conventional monolayer techniques. Acta Orthop Scand 74:6–15

    Article  PubMed  Google Scholar 

  • Lorenzo P, Bayliss MT, Heinegard D (2004) Altered patterns and synthesis of extracellular matrix macromolecules in early osteoarthritis. Matrix Biol 23:381–391

    Article  PubMed  CAS  Google Scholar 

  • Mahajan A, Verma S, Tandon V (2005) Osteoarthritis. J Assoc Physicians India 53:634–641

    PubMed  CAS  Google Scholar 

  • Mandl EW, van der Veen SW, Verhaar JA, van Osch GJ (2002) Serum-free medium supplemented with high-concentration FGF2 for cell expansion culture of human ear chondrocytes promotes redifferentiation capacity. Tissue Eng 8:573–580

    Article  PubMed  CAS  Google Scholar 

  • Mandl EW, van der Veen SW, Verhaar JA, van Osch GJ (2004) Multiplication of human chondrocytes with low seeding densities accelerates cell yield without losing redifferentiation capacity. Tissue Eng 10:109–118

    Article  PubMed  CAS  Google Scholar 

  • Marlovits S, Kutscha-Lissberg F, Aldrian S, Resinger C, Singer P, Zeller P, Vecsei V (2004) Autologous chondrocyte transplantation for the treatment of articular cartilage defects in the knee joint. Tech Results Radiologe 44:763–772

    CAS  Google Scholar 

  • Martin I, Jakob M, Schafer D, Dick W, Spagnoli G, Heberer M (2001) Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 9:112–118

    Article  PubMed  CAS  Google Scholar 

  • Martin JA, Buckwalter JA (2002) Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3:257–264

    Article  PubMed  CAS  Google Scholar 

  • Mesa JM, Zaporojan V, Weinand C, Johnson TS, Bonassar L, Randolph MA, Yaremchuk MJ, Butler PE (2006) Tissue engineering cartilage with aged articular chondrocytes in vivo. Plast Reconstr Surg 118(1):41–49

    Article  PubMed  CAS  Google Scholar 

  • Miosge N, Waletzko K, Bode C, Quondamatteo F, Schultz W, Herken R (1998) Light and electron microscopic in-situ hybridization of collagen type I and type II mRNA in the fibrocartilaginous tissue of late-stage osteoarthritis. Osteoarthritis Cartilage 6:278–285

    Article  PubMed  CAS  Google Scholar 

  • Murphy CL, Sambanis A (2001) Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng 7:791–803

    Article  PubMed  CAS  Google Scholar 

  • Murphy CL, Polak JM (2004) Control of human articular chondrocyte differentiation by reduced oxygen tension. J Cell Physiol 199:451–459

    Article  PubMed  CAS  Google Scholar 

  • O’Shea GM, Goosen MF, Sun AM (1984) Prolonged survival of transplantation islet of Langerhans encapsulated in biocompatible membrane. Biochim Biophys Acta 804:133–136

    Article  PubMed  CAS  Google Scholar 

  • Petit B, Masuda K, D’Souza AL, Otten L, Pietryla D, Hartmann DJ, Morris NP, Uebelhart D, Schmid TM, Thonar EJ (1996) Characterization of crosslinked collagens synthesized by mature articular chondrocytes cultured in alginate beads: comparison of two distinct matrix compartments. Exp Cell Res 225:151–161

    Article  PubMed  CAS  Google Scholar 

  • Picariello L, Sala SC, Martineti V, Gozzini A, Aragona P, Tognarini I, Paglierani M, Nesi G, Brandi ML, Tonelli F (2006) A comparison of methods for the analysis of low abundance proteins in desmoid tumor cells. Anal Biochem 354(2):205–212

    Article  PubMed  CAS  Google Scholar 

  • Redman SN, Oldfield SF, Archer CW (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9:23–32

    PubMed  CAS  Google Scholar 

  • Ross JM, Sherwin AF, Poole CA (2006) In vitro culture of enzymatically isolated chondrons: a possible model for the initiation of osteoarthritis. J Anat 209(6):793–806

    Article  PubMed  CAS  Google Scholar 

  • Russiel M, Behrens P, Ehlers EM, Brohl C, Vindigni C, Spector M, Kurz B (2005) Periosteum stimulates subchondral bone densification in autologous chondrocyte transplantation in a sheep model. Cell Tissue Res 319(1):133–142

    Article  Google Scholar 

  • Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113

    Article  PubMed  CAS  Google Scholar 

  • Saxon L, Finch C, Bass S (1999) Sports participation, sports injuries and osteoarthritis: Implication for prevention. Sports Med 28:123–135

    Article  PubMed  CAS  Google Scholar 

  • Sittinger M, Perka C, Schultz O, Haupl T, Burmester GR (1999) Joint cartilage regeneration by tissue engineering. Z Rheumatol 58:130–135

    Article  PubMed  CAS  Google Scholar 

  • Smith GD, Knutsen G, Richardson JB (2005)A clinical review of cartilage repair techniques. JBJS 87:B445–B449

    Google Scholar 

  • Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440

    Article  PubMed  CAS  Google Scholar 

  • Valis P, Chaloupka R, Krbec M, Repko M, Adler J, Nydrle M (2004) Treatment of patellar cartilage defects by solid chondral graft: first experience. Acta Chir Orthop Traumatol Cech 71:339–344

    PubMed  CAS  Google Scholar 

  • Verbruggen G, Cornelissen M, Almqvist KF, Wang L, Elewaut D, Broddelez C, de Ridder L, Veys EM (2000) Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes. Osteoarthritis Cartilage 8(3):170–179

    Article  PubMed  CAS  Google Scholar 

  • Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JW, Lafeber FP, TeKoppele JM (2002) Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 46(1):114–123

    Article  PubMed  CAS  Google Scholar 

  • Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartilage 10:199–206

    Article  CAS  Google Scholar 

  • Westreich R, Kaufman M, Gannon P, Lawson W (2004) Validating the subcutaneous model of injectable autologous cartilage using a fibrin glue scaffold. Laryngoscope 114:2154–2160

    Article  PubMed  CAS  Google Scholar 

  • Yang IH, Kim SH, Kim YH, Sun HJ, Kim SJ, Lee JW (2004) Comparison of phenotypic characterization between “alginate bead” and “pellet” culture systems as chondrogenic differentiation models for human mesenchymal stem cells. Yonsei Med J 45:891–900

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Fondazione Ente Cassa di Risparmio di Firenze to Maria Luisa Brandi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Brandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carossino, A.M., Recenti, R., Carossino, R. et al. Methodological models for in vitro amplification and maintenance of human articular chondrocytes from elderly patients. Biogerontology 8, 483–498 (2007). https://doi.org/10.1007/s10522-007-9088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-007-9088-4

Keywords

Navigation