Skip to main content

Advertisement

Log in

Muscular tubes of urethra engineered from adipose-derived stem cells and polyglycolic acid mesh in a bioreactor

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

We have explored the feasibility of using adipose-derived stem cells (ADSCs) and polyglycolic acid (PGA) for constructing muscular tubes of urethra in a bioreactor. With the induction of by 5-azacytidine, ADSCs were found to acquire a myoblast phenotype. Here we seeded ADSCs in a PGA mesh to construct the cell–PGA complex that was cultured statically for 1 week. Afterwards, the cell–PGA complex was subjected to extension stimulation in a bioreactor for 5 weeks. A muscular tube of urethra was formed after 6 weeks. Histological examination showed differentiated ADSCs and collagenous fibers had orientated well. This study demonstrates that tissue engineering of urethra tissues in vitro by using a bioreactor leads to tissue maturation and the differentiation of ADSCs. This novel technique could provide an effective approach for urethra tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn HH, Lee JH, Kim KS, Lee JY, Kim MS et al (2008) Polyethyleneimine-mediated gene delivery into human adipose derived stem cells. Biomaterials 29:2415–2422

    Article  CAS  PubMed  Google Scholar 

  • Andrich DE, Mundy AR (2001) Substitution urethroplasty with buccal mucosal-free grafts. J Urol 165:1131–1134

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni E, Lopa S, de Girolamo L, Stanco D, Brini AT (2009) Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res 338:401–411

    Article  PubMed  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  CAS  PubMed  Google Scholar 

  • Benhardt HA, Cosgriff-Hernandez EM (2009) The role of mechanical loading in ligament tissue engineering. Tissue Eng B 15:467–475

    Article  CAS  Google Scholar 

  • Bian L, Fong JV, Lima EG, Stoker AM, Ateshian GA et al (2010) Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes. Tissue Eng A 16:1781–1790

    Article  CAS  Google Scholar 

  • Chancellor MB, Yokoyama T, Tirney S, Mattes CE, Ozawa H et al (2000) Preliminary results of myoblast injection into the urethra and bladder wall: a possible method for the treatment of stress urinary incontinence and impaired detrusor contractility. Neurourol Urodyn 19:279–287

    Article  CAS  PubMed  Google Scholar 

  • Dado D, Sagi M, Levenberg S, Zemel A (2012) Mechanical control of stem cell differentiation. Regen Med 7:101–116

    Article  PubMed  Google Scholar 

  • Fu Q, Song XF, Liao GL, Deng CL, Cui L (2010) Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology 75:718–723

    Article  PubMed  Google Scholar 

  • Gui L, Zhao L, Spencer RW, Burghouwt A, Taylor MS et al (2011) Development of novel biodegradable polymer scaffolds for vascular tissue engineering. Tissue Eng A 17:1191–1200

    Article  CAS  Google Scholar 

  • Haque ME, Rahman MA, Islam MF, Siddique FH, Uddin MM et al (2012) Ventral free oral mucous membrane graft for bulbar urethral stricture. Mymensingh Med J 21:696–701

    CAS  PubMed  Google Scholar 

  • Lee WC, Maul TM, Vorp DA, Rubin JP, Marra KG (2007) Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechanobiol 6:265–273

    Article  PubMed  Google Scholar 

  • Liao X, Li F, Wang X, Yanoso J, Niyibizi C (2008) Distribution of murine adipose-derived mesenchymal stem cells in vivo following transplantation in developing mice. Stem Cells Dev 17:303–314

    Article  CAS  PubMed  Google Scholar 

  • Marra KG, Brayfield CA, Rubin JP (2011) Adipose stem cell differentiation into smooth muscle cells. Methods Mol Biol 702:261–268

    Article  CAS  PubMed  Google Scholar 

  • Marzorati G, Ghinolfi G, Pachera F, Meazza A (2008) Bladder and buccal mucosa graft in urethral stricture reconstruction. Urologia 75:177–179

    CAS  PubMed  Google Scholar 

  • Mathur RK, Himanshu A, Sudarshan O (2007) Technique of anterior urethra urethroplasty using tunica albuginea of corpora cavernosa. Int J Urol 14:209–213

    Article  PubMed  Google Scholar 

  • Mikami H, Kuwahara G, Nakamura N, Yamato M, Tanaka M et al (2012) Two-layer tissue engineered urethra using oral epithelial and muscle derived cells. J Urol 187:1882–1889

    Article  PubMed  Google Scholar 

  • Mitchell JB, Mcintosh K, Zvonic S, Garrett S, Floyd ZE et al (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385

    Article  PubMed  Google Scholar 

  • Mizuno H, Tobita M, Uysal AC (2012) Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30:804–810

    Article  CAS  PubMed  Google Scholar 

  • Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S et al (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  CAS  PubMed  Google Scholar 

  • Niklason LE, Abbott W, Gao J, Klagges B, Hirschi KK et al (2001) Morphologic and mechanical characteristics of engineered bovine arteries. J Vasc Surg 33:628–638

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Rehder P, Glodny B, Pichler R, Exeli L, Kerschbaumer A et al (2010) Dorsal urethroplasty with labia minora skin graft for female urethral strictures. BJU Int 106:1211–1214

    Article  PubMed  Google Scholar 

  • Rodríguez LV, Alfonso Z, Zhang R, Leung J, Wu B et al (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci USA 103:12167–12172

    Article  PubMed Central  PubMed  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Cen L, Yin S, Liu Q, Liu W et al (2010) A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials 31:621–630

    Article  PubMed  Google Scholar 

  • Zhu Y, Liu T, Song K, Fan X, Ma X et al (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (30973016) and Shanghai Natural Science Foundation (09ZR1424100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fu, Q., Zhao, RY. et al. Muscular tubes of urethra engineered from adipose-derived stem cells and polyglycolic acid mesh in a bioreactor. Biotechnol Lett 36, 1909–1916 (2014). https://doi.org/10.1007/s10529-014-1554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1554-x

Keywords

Navigation