Skip to main content
Log in

Enzymatic potential for the valorization of agro-industrial by-products

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Agro-industrial residues and by-products are a crescent environmental problem since they are often discarded without proper treatment, and still have growing production. These residues are rich from a nutritional point of view and contain various industrial relevant compounds, such as phenolic compounds, fibers, vitamins, sugars and others. The crescent worrying about environmental issues has led researchers and industries to focus on “eco-friendly” solutions for everyday problems. In this sense, the use of enzymes for the valorization of agro-industrial residues is a safe and green alternative technology. Hence, this review aims to show the enzyme potential for the use and valorization of several agro-industrial residues, focusing on the most produced residues worldwide, such as fruits, grains and lignocellulosic residues, as well as a brief explanation of microbial enzymes, its production and optimization, altogether with tools to identify producing microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullah J, Greetham D (2016) Optimizing cellulase production from municipal solid waste (msw) using solid state fermentation (SSF). J Fundam Renew Energy Appl. https://doi.org/10.4172/2090-4541.1000206

    Article  Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139

    PubMed  PubMed Central  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    CAS  PubMed  Google Scholar 

  • Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42:41–46. https://doi.org/10.1016/j.bej.2008.05.007

    Article  CAS  Google Scholar 

  • Ahmad A, Shah SMU, Othman MF, Abdullah MA (2014) Enhanced palm oil mill effluent treatment and biomethane production by co-digestion of oil palm empty fruit bunches with Chlorella sp. Canadian J Chem Eng 92:1636–1642

    CAS  Google Scholar 

  • Akpinar M, Ozturk UR (2017) Induction of fungal laccase production under solid state bioprocessing of new agro-industrial waste and its application on dye decolorization. Biotech 7(2):98

    Google Scholar 

  • Alagöz BA, Yenigün O, Erdinçler A (2016) Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: comparison with microwave pre-treatment Ultrason. Sonochem 40:193–200

    Google Scholar 

  • Alexandre EMC, Moreira SA, Castro LMG, Pintado M, Saraiva JA (2018) Emerging technologies to extract high added value compounds from fruit residues: sub/supercritical, ultrasound-, and enzyme-assisted extractions. Food Res Int. https://doi.org/10.1080/87559129.2017.1359842

    Article  PubMed  Google Scholar 

  • Alrahmany R, Avis TJ, Tsopmo A (2013) Treatment of oat bran with carbohydrases increases soluble phenolic acid and influences antioxidant and antimicrobial activities. Food Res Int 52:568–574

    CAS  Google Scholar 

  • Alrahmany R, Tsopmo A (2012) Role of carbohydrases on the release of reducing sugar, total phenolics and on antioxidant properties of oat bran. Food Chem 132(1):413–418

    CAS  PubMed  Google Scholar 

  • Alvira P, Toma´s-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. BioresourTechnol 101(13):4851–4861

    CAS  Google Scholar 

  • Anis M, Husin M, Wan Hasamudin WH, Chua KH. (2003). Oil palm plywood manufacture in Malaysia. In: Proceedings of the 6th national seminar on the utilization of oil palm tree. Malaysia: Oil Palm Tree Utilization Committee (OPTUC). 51–5.

  • Armstrong Z, Mewis K, Strachan C, Hallam SJ (2015) Biocatalysts for biomass deconstruction from environmental genomics. Curr Opin Chem Biol 29:18–25

    CAS  PubMed  Google Scholar 

  • Astolfi V, Astolfi AL, Mazutti MA, Rigo E, Di Luccio M, Camargo AF, Dalastra C, Kubeneck S, Fongaro G, Treichel H (2019) Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-019-02072-2

    Article  PubMed  Google Scholar 

  • Awarenet. (2004). Handbook for the prevention and minimization of waste and valorization of by-products in European Agro-Food Industries.

  • Bajaj A, Lohan P, Jha PN, Mehrotra R (2010) Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym 62:9–14

    CAS  Google Scholar 

  • Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002) Ethanol production from olive oil extraction residue pretreated with hot water. Appl Biochem Biotechnol 98:717–732

    PubMed  Google Scholar 

  • Banerjee J, Singh R, Vijayaraghavan R, MacFarlane D, Patti AF, Arora A (2017) Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. https://doi.org/10.1016/j.foodchem.2016.12.093

    Article  PubMed  Google Scholar 

  • Bartolomé B, Faulds CB, Williamson G (1997) Enzymic release of ferulic acid from barley spent grain. J Cereal Sci 25:285–288

    Google Scholar 

  • Bartolomé B, Gómez-Cordovés C (1999) Barley spent grain: release of hydroxycinnamic acids (ferulic and p-coumaric acids) by commercial enzyme preparations. J Sci Food Agric 79:435–439

    Google Scholar 

  • Bartolomé B, Gómez-Cordovés C, Sancho AI et al (2003) Growth and release of hydroxycinnamic acids from brewer’s spent grain by Streptomyces avermitilis CECT 3339. Enzyme Microb Technol 32:140–144

    Google Scholar 

  • Battock M, Azam-Ali S. (1998). Fermented fruits and vegetables: a global perspective. In: FAO Agricultural Services Bulletin. vol. 134. Food and Agriculture Organization of the United Nations, FAO, Rome.

  • Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol 86:656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090

    Article  CAS  PubMed  Google Scholar 

  • Benoit I, Navarro D, Marnet N, Rakotomanomana N, Lesage-Meessen L, Sigoillot JC et al (2006) Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbon Res 341:1820–1827

    CAS  Google Scholar 

  • Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721

    CAS  PubMed  Google Scholar 

  • Bhat M (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383. https://doi.org/10.1016/S0734-9750(00)00041-0

    Article  CAS  PubMed  Google Scholar 

  • Bogar B, Szakacs G, Tengerdy RP et al (2002) Production of alpha-amylase with Aspergillus oryzae on spent brewing grain by solid substrate fermentation. Appl Biochem Biotechnol 102:453–461

    PubMed  Google Scholar 

  • Buckova M, Godocikova J, Zamocky M, Polek B (2010) Isolates of Comamonas spp. exhibiting catalase and peroxidase activities and diversity of their responses to oxidative stress. Ecotoxicol Environ Saf 73:1511–1516

    CAS  PubMed  Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19(3):210–217

    CAS  PubMed  Google Scholar 

  • Calandrelli V, Gambacotra A, Romano I, Carratore V, Lama L (2008) A novel thermo-alkali stable catalase–peroxidase from Oceanobacillus oncorhynchi subsp. incaldaniensis: purification and characterisation. World J Microbiol Biotechnol 24:2269–2275

    CAS  Google Scholar 

  • Castro AM, de Carvalho MLDA, Leite SGF, Pereira N (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37(2):151–158

    CAS  PubMed  Google Scholar 

  • Castoldi R, Bracht A, de Morais GR, Baesso ML, Correa RCG, Peralta RA, Moreira RFPM, Polizeli MT, de Souza CGM, Peralta RM (2014) Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chem Eng J 258:240–246

    CAS  Google Scholar 

  • Castrillo JI, de Miguel I, Ugalde UO (1995) Proton production and consumption pathways in yeast metabolism: a chemostat culture analysis. Yeast 11(14):1353–1365

    CAS  PubMed  Google Scholar 

  • Chae HJ, Joo H, In M-J (2001) Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour Technol 76:253–258

    CAS  PubMed  Google Scholar 

  • Cianchetta S, Maggio BD, Burzi PL, Galletti S (2014) Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Appl Biochem Biotechnol 173(2):609–623

    CAS  PubMed  Google Scholar 

  • Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilization of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(6):741–755

    CAS  Google Scholar 

  • Cong B, Wang N, Liu S, Liu F, Yin X, Shen J (2017) Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source. BMC Microbiol 17:129

    PubMed  PubMed Central  Google Scholar 

  • Correa INS, Souza SL, Catran M, Bernardes OL, Portilho MF, Langone MAP (2011) Enzymatic biodiesel synthesis using a byproduct obtained from palm oil refining. Enzyme Res 1:1–8

    Google Scholar 

  • Coscueta ER, Amorim MM, Voss GB, Nerli BB, Picó GA, Pintado ME (2016) Bioactive properties of peptides obtained from Argentinian defatted soy flour protein by Corolase PP hydrolysis. Food Chem 198:36–44

    CAS  PubMed  Google Scholar 

  • Cot M, Loret MO, Francois J, Benbadis L (2007) Physiological behavior of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Res 7(1):22–32

    CAS  PubMed  Google Scholar 

  • Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A (2015) Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front Microbiol 6:672

    PubMed  PubMed Central  Google Scholar 

  • Cruz R, Cardoso MM, Fernandes L, Oliveira M, Mendes E, Baptista P, Morais S, Casal S (2012) Espresso coffee residues: a valuable source of unextracted compounds. J Agric Food Chem 60(32):7777–7784

    CAS  PubMed  Google Scholar 

  • Culligan EP, Sleator RD, Marchesi JR, Hill C (2014) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5:399–412

    PubMed  Google Scholar 

  • Da Silva ARG, Ortega CET, Rong BG (2016) Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresour Techn 218:561–570

    Google Scholar 

  • Dai L, He C, Wang Y, Liu Y, Yu Z, Zhou Y, Fan L, Duan D, Ruan R (2017) Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: hydrochar properties and its pyrolysis behaviors. Energy Convers Manage 146:1–7

    CAS  Google Scholar 

  • Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dapčević-Hadnađev T, Hadnadev M, Pojic M (2018) The healthy components of cereal by-products and their functional properties. In: Galanakis CM (ed) Sustainable Recovery and Reutilization of Cereal Processing By-Products. Elsevier Ltd., Cambridge, UK, pp 27–61

    Google Scholar 

  • Das A, Ghosh P, Paul T, Ghosh U, Pati BR, Mondal KC. (2016). Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). 3 Biotech. 6(1).

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    CAS  PubMed  Google Scholar 

  • Demirel B, Yenigun O, Onay TT (2005) Anaerobic treatment of dairy wastewaters: a review. Process Biochem 40(8):2583–2595

    CAS  Google Scholar 

  • Deng F, Aita GM (2018) Detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by soluble polyelectrolyte flocculants. Ind Crops Prod 112:681–690

    CAS  Google Scholar 

  • Di Gioia D, Sciubba L, Setti L, Luziatelli F, Ruzzi M, Zanichelli D, Fava F (2007) Production of biovanillin from wheat bran. Enzyme Microb Tech 41:498–505

    Google Scholar 

  • Dias JM, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MG, Ramos AM, Oliveira R, Reis MA (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6(11):885–906

    CAS  PubMed  Google Scholar 

  • Dias LM, dos Santos BV, Albuquerque CJB, Baeta BEL, Pasquini D, Baffi MA (2018) Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. J Appl Microbiol 124:708–718. https://doi.org/10.1111/jam.13672

    Article  CAS  PubMed  Google Scholar 

  • Dionisi HM, Lozada M, Olivera NL (2012) Bioprospection of marine microorganisms: biotechnological applications and methods. Rev Argent Microbiol 44:49–60

    CAS  PubMed  Google Scholar 

  • do Rêgo de O SL, Maciel TC, de Oliveira Sancho S, Rodrigues S. (2016). Solid-state production of cellulase by Melanoporia sp. CCT 7736: a new strain isolated from coconut shell (Cocos nucifera L.). Bioresour. Bioprocess. 3.

  • Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    CAS  PubMed  Google Scholar 

  • Echeverria MC, Nuti M (2017) Valorisation of the residues of coffee agro-industry: perspectives and limitations. Open Waste Manage J 10:13–22

    CAS  Google Scholar 

  • El Aasar S (2006) Submerged fermentation of cheese whey and molasses for citric acid production by Aspergillus niger. Int J Agr Biol 8:463–467

    Google Scholar 

  • El-Batala AI, ElKenawya NM, Yassinb AS, Amin MA (2015) Laccase production by Pleurotusostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5:31–39

    Google Scholar 

  • Encinar JM, Sanchez N, Martınez G, Garcıa L (2011) Study of biodiesel production from animal fats with high free fatty acid content. Bioresour Technol 102:10907–10914

    CAS  PubMed  Google Scholar 

  • Farinas CS. (2018). Solid-State fermentation for the on-site production of cellulolytic enzymes and their use in the saccharification of lignocellulosic biomass. In: Current Developments in Biotechnology and Bioengineering. Elsevier B.V.

  • Faulds CB, Mandalari G, LoCurto R, Bisignano G, Waldron KW (2004) Arabinoxylan and mono- and dimeric ferulic acid release from brewer’s spent grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicola insolens. Appl Microbiol Biotechnol 64:644–650

    CAS  PubMed  Google Scholar 

  • Federici F, Petruccioli M, Montedoro GF, Begliomini AL, Servili M (1991) Combined physico-chemical and biological treatment of olive vegetation waters in pilot-plant scale. Med Fac Landbouww Rijksuniv Gent 56:1573–1578

    CAS  Google Scholar 

  • Federico F, Fabio F, Nicolas K, Dionissios M (2009) Valorization of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. J Chem Technol Biotechnol 84:895–900

    Google Scholar 

  • Fenice M, Sermanni GG, Federici F, D’Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol 100:77–85

    CAS  PubMed  Google Scholar 

  • Ferrentino G, Asaduzzaman M, Scampicchio MM (2018) Current technologies and new insights for the recovery of high valuable compounds from fruits by-products. Crit Rev Food Sci Nutr 58:386–404. https://doi.org/10.1080/10408398.2016.1180589

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Beloqui A, Timmis KM, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16:109–123

    CAS  PubMed  Google Scholar 

  • Ferri M, Graen-Heedfeld J, Bretz K, Guillon F, Michelini E, Calabretta MM, Lamborghini M, GruarinN RA, Kraft A, Tassoni A (2017) Peptide fractions obtained from rice by-products by means of an environment-friendly process show in vitro health-related bioactivities. PLoS ONE 12:e0170954. https://doi.org/10.1371/journal.pone.0170954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer K, Bipp H-P (2005) Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues. Bioresour Technol 96:831–842

    CAS  PubMed  Google Scholar 

  • Fountoulakis MS, Drakopoulou S, Terzakis S, Georgaki E, Manios T (2008) Potential for methane production from typical Mediterranean agroindustrial by-products. Biomass Bioen 32:155–161

    CAS  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628

    CAS  PubMed  Google Scholar 

  • Gamarra NN, Villena GK, Gutiérrez-Correa M (2010) Cellulase production by Aspergillus niger in biofilm, solid-state and submerged fermentations. Appl Microbiol Biotechnol 87:545–551

    CAS  PubMed  Google Scholar 

  • Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99:7623–7629. https://doi.org/10.1016/j.biortech.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  • Gardossi L, Poulsen PB, Ballesteros A, Hult K, Švedas VK, Vasić-Rački D, Carrea G, Magnusson A, Schmid A, Wohlgemuth R, Halling PJ (2010) Guidelines for reporting of biocatalytic reactions. Trends Biotechnol 28:171–180. https://doi.org/10.1016/j.tibtech.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  • Gavala HN, Skiadas IV, Ahring BK, Lyberatos G (2005) Potential for biohydrogen and methane production from olive pulp. Water Sci Technol 52:209–215

    CAS  PubMed  Google Scholar 

  • Gelegenis J, Georgakakis D, Angelidaki I, Christopoulou N, Goumenaki M (2007) Optimization of biogas production from olive-oil mill wastewater by codigesting with diluted poultry-manure. Appl Energy 84:646–663

    CAS  Google Scholar 

  • Georgieva TI, Ahring BK (2007) Potential of agroindustrial waste from olive oil industry for fuel ethanol production. Biotechnol J 2:1547–1555

    CAS  PubMed  Google Scholar 

  • Ghaly AE, Kamal M, Avery A (2003) Influence of temperature rise on kinetic parameters during batch propagation of Kluyveromyces fragilis in cheese whey under ambient conditions. World J Microbiol Biotechnol 19(7):741–749

    CAS  Google Scholar 

  • Ghosh S, Murthy S, Govindasamy S, Chandrasekaran M (2013) Optimization of L-asparaginase production by Serratia marcescens (NCIM 2919) under solid state fermentation using coconut oil cake. Sustain Chem Process 1:1–9

    Google Scholar 

  • Giuseppin M, van Eijk HM, Bes BC (1988) Molecular regulation of methanol oxidase activity in continuous cultures of Hansenula polymorpha. Biotechnol Bioeng 32:577–583

    CAS  PubMed  Google Scholar 

  • Gonzalez JC, Medina SC, Rodriguez A, Osma JF, Alméciga-Díaz CJ, Sánchez OF (2013) Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes. PLoS ONE 8(9):73721. https://doi.org/10.1371/journal.pone.0073721

    Article  CAS  Google Scholar 

  • Grba S, Stehlik-Tomas V, Stanzer D, Vahcic N, Skrlin A (2002) Selection of yeast strain Kluyveromyces marxianus for alcohol and biomass production on whey. Chem Biochem Eng Q 16:13–16

    CAS  Google Scholar 

  • Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of lactose to bioethanol by yeasts as part of integrated solutions for the valorization of cheese whey. Biotechnol Adv 28(3):375–384

    PubMed  Google Scholar 

  • Guo TR (2007) Physiological changes in barley plants under combined toxicity of aluminium, copper and cadmium. Colloids Surf B 57:182–188

    CAS  Google Scholar 

  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status and perspective. Renew Sust Energy Rev 42:712–725

    CAS  Google Scholar 

  • Gupta A, Jana AK (2017) Effects of wheat straw solid contents in fermentation media on utilization of soluble/insoluble nutrient, fungal growth and laccase production. 3 Biotech 8(1):35

    PubMed  PubMed Central  Google Scholar 

  • Gupta A, Kumar V, Dubey A, Verma AK. (2014). Kinetic characterization and effect of immobilized thermostable α-glucosidase in alginate gel beads on sugarcane juice. ISRN Biochem.

  • GVR (2020a) Biotech Ingredients Market Size, Share & Trends Analysis Report By Flavors (By Source, By Type, By Application), By Fragrances (Fine Fragrances, Toiletries), By Active Cosmetic Ingredients, And Segment Forecasts, 2020–2027. https://www.grandviewresearch.com/industry-analysis/biotech-ingredients-market. Acessed 23 June 2020.

  • GVR (2020b) Dietary Supplements Market Size, Share & Trends Analysis Report by Ingredient (Vitamins, Minerals), By Form, By Application, By End User, By Distribution Channel, By Region, and Segment Forecasts, 2020–2027. https://www.grandviewresearch.com/industry-analysis/dietary-supplements-market. Acessed 23 June 2020.

  • Halbmayr E, Mathiesen G, Nguyen TH, Maischberger T, Peterbauer CK, Eijsink VGH, Haltrich D (2008) High-level expression of recombinant beta-galactosidases in Lactobacillus plantarum and Lactobacillus sakei using a sakacin P-based expression system. J Agric Food Chem 56:4710–4719

    CAS  PubMed  Google Scholar 

  • Hansen CG, Ng YLD, Lam WLM, Plouffe SW, Guan KL (2015) The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res 25(12):1299–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huige NJ. (2006). Brewery by-products and effluents. In: Priest FG, Stewart GG (eds) Handbook of Brewing, 2nd edn. CRC Press, Boca Raton.

  • Iandolo D, Piscitelli A, Sannia G, Faraco V (2011) Enzyme production by solid substrate fermentation of Pleurotus ostreatus and Trametes versicolor on tomato pomace. Appl Biochem Biotechnol 163:40–51

    CAS  PubMed  Google Scholar 

  • Ibrahim MF, Abd-Aziz S, Yusoff MEM, Phang LY, Hassan MA (2015) Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. Renew Energy 77:447–455. https://doi.org/10.1016/j.renene.2014.12.047

    Article  CAS  Google Scholar 

  • Idris ASO, Pandey A, Rao SS, Sukumaran RK (2017) Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresour Technol 242:265–271. https://doi.org/10.1016/j.biortech.2017.03.092

    Article  CAS  PubMed  Google Scholar 

  • Iwuagwu JO, Ugwuanyi JO. (2014). Treatment and valorization of palm oil mill effluent through production of food grade yeast biomass. J Waste Manage, 2014.

  • Jakociunas T, Bonde I, Herrgard M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222

    CAS  PubMed  Google Scholar 

  • Janaun J, Ellis N (2010) Perspectives on biodiesel as a sustainable fuel. Sust Energy Rev 14:1312–1320

    CAS  Google Scholar 

  • Jooste T, García-Aparicio MP, Brienzo M, van Zyl WH, Görgens JF (2013) Enzymatic hydrolysis of spent coffee ground. Appl Biochem Biotechnol 169:2248–2262

    CAS  PubMed  Google Scholar 

  • Joshi C, Khare SK (2011) Utilization of deoiled Jatrophacurcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Biores Technol 102:1722–1726

    CAS  Google Scholar 

  • Joy OI, Obeta UJ (2014) Treatment and valorization of palm oil mill effluent through production of food grade yeast biomass. J Waste Manage. https://doi.org/10.1155/2014/439071

    Article  Google Scholar 

  • Juwaied AA, Al-Amiery AAH, Abdumuniem Z, Anaam U (2011) Optimization of cellulase production by Aspergillus niger and Tricoderma viride using sugarcane waste. J Yeast Fungal Res 2:19–23

    CAS  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–203

    CAS  Google Scholar 

  • Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J. https://doi.org/10.1155/2014/298153

    Article  Google Scholar 

  • Kar S, Sona Gauri S, Das A, Jana A, Maity C, Mandal A, Das Mohapatra PK, Pati BR, Mondal KC (2013) Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzymes obtained from SSF and SmF. Bioprocess Biosyst Eng 36:57–68

    CAS  PubMed  Google Scholar 

  • Kasmi M (2018) Biological processes as promoting way for both treatment and valorization of dairy industry effluents. Waste Biomass Valor 9:195–209

    CAS  Google Scholar 

  • Keukeleire DD (2000) Fundamentals of beer and hop chemistry. Quim Nova 23:108–112

    Google Scholar 

  • Khalil HA, Fazita MN, Bhat AH, Jawaid M, Fuad NN (2010) Development and material properties of new hybrid plywood from oil palm biomass. Materials & Design, 31(1), 417–424.Kim D, Han GD (2012) High hydrostatic pressure treatment combined with enzymes increases the extractability and bioactivity of fermented rice bran. Innov Food Sci Emerg 16:191–197

    Google Scholar 

  • Kim D, Han GD (2012) High hydrostatic pressure treatment combined with enzymes increases the extractability and bioactivity of fermented rice bran. Innov Food Sci Emerg 16:191–197

    CAS  Google Scholar 

  • Kim S, Lim ST (2016) Enhanced antioxidant activity of rice bran extract by carbohydrase treatment. J Cereal Sci 68:116–121

    CAS  Google Scholar 

  • Kim SJ, Lee CM, Han BR, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51

    CAS  PubMed  Google Scholar 

  • Kogo T, Yoshida Y, Koganei K, Matsumoto H, Watanabe T, Ogihara J, Kasumi T.(2017). Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour Technol

  • Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS. (2017). Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess.

  • Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962

    CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnol Adv 29:124–141

    CAS  PubMed  Google Scholar 

  • Laroze L, Soto C, Zúñiga ME (2010) Phenolic antioxidants extraction from raspberry wastes assisted by-enzymes. Electron J Biotechnol. https://doi.org/10.2225/vol13-issue6-fulltext-12

    Article  Google Scholar 

  • Laufenberg G, Kunz B, Nystroem M (2003) Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementation. Bioresour Technol 87:167–198

    CAS  PubMed  Google Scholar 

  • Lazaro CZ, Bosio M, dos Santos FJ, Varesche MBA, Silva EL (2015) The biological hydrogen production potential of agro industrial residues. Waste Biomass Valor 6(3):273–280

    CAS  Google Scholar 

  • Lee CK, Darah I, Ibrahim CO (2011) Production and optimization of cellulase enzyme using Aspergillus niger USM AI 1 and comparison with Trichoderma reesei via solid state fermentation system. Biotechnol. Res, Int, p 658493

    Google Scholar 

  • Li BB, Smith B, Hossain MM (2006) Extraction of phenolics from citrus peels: II Enzyme-assisted extraction method. Sep Purif Technol 48:189–196. https://doi.org/10.1016/j.seppur.2005.07.019

    Article  CAS  Google Scholar 

  • Li G, Fu Y, Dang W et al (2019) The effects of aqueous ammonia-pretreated rice straw as solid substrate on laccase production by solid-state fermentation. Bioprocess Biosyst Eng 42:567–574. https://doi.org/10.1007/s00449-018-02060-y

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S (2011) From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 90:1545–1548

    CAS  Google Scholar 

  • Liao H, Fan XT, Mei X, Wei Z, Raza W, Shen Q, Xu Y (2015) Production and characterization of cellulolytic enzyme from Penicillium oxalicum GZ-2 and its application in lignocellulose saccharification. Biomass Bioenergy 74:122–134. https://doi.org/10.1016/j.biombioe.2015.01.016

    Article  CAS  Google Scholar 

  • Liew WL, Kassim MA, Muda K, Loh SK, Affam AC (2015) Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review. J Environ Manage 149:222–235

    CAS  PubMed  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl microbiol biotechnol 69(6):627–642

    CAS  PubMed  Google Scholar 

  • Lin YS, Lee WC, Duan KJ, Lin YH (2013) Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus. Appl Energy 105:389–394

    CAS  Google Scholar 

  • Liu L, Wen W, Zhang R, Wei Z, Deng Y, Xiao J, Zhang M (2017) Complex enzyme hydrolysis releases antioxidative phenolics from rice bran. Food Chem 214:1–8

    CAS  PubMed  Google Scholar 

  • Lukondeh T, Ashbolt NJ, Rogers PL (2005) Fed-batch fermentation for production of Kluyveromyces marxianus FII 510700 cultivated on a lactose-based medium. J Ind Microbiol Biotechnol 32(7):284–288

    CAS  PubMed  Google Scholar 

  • Manisha YSK (2017) Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. Bioresour Technol 245:1727–1739. https://doi.org/10.1016/j.biortech.2017.05.066

    Article  CAS  PubMed  Google Scholar 

  • Marathe SJ, Jaddhav SD, Bankar SB, Singhai RS. (2017). Enzyme-assisted extraction of bioactives. In: Puri M. (Ed.) Food Bioactives, Springer Nature, pp. 171–201.

  • Massadeh MI, Modallal N (2008) Ethanol production from olive mill wastewater (OMW) pre-treated with Pleurotus sajor-caju. Energy Fuel 22:150–154

    CAS  Google Scholar 

  • Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33:25–40

    CAS  PubMed  Google Scholar 

  • Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10(6):1457–1467

    CAS  PubMed  Google Scholar 

  • Mate DM, Alcalde M (2016) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microbiol Biotechnol 10(6):1457–1467. https://doi.org/10.1111/1751-7915.12422

    Article  CAS  Google Scholar 

  • Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47(3):195–203

    CAS  Google Scholar 

  • Mclntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101:6718–6727

    Google Scholar 

  • Md-Din MF, Ponraj M, Van Loosdrecht M et al (2014) Utilization of palm oil mill effluent for polyhydroxyalkanoate production and nutrient removal using statistical design. Int J Environ Sci Technol 11(3):671–684

    CAS  Google Scholar 

  • Menasria T, Aguilera M, Hocine H, Benammar L, Ayachi A, Bachir AS, Dekak A, Monteoliva-Sánchez M (2018) Diversity and bioprospecting of extremely halophilic archaea isolated from Algerian arid and semi-arid wetland ecosystems for halophilic-active hydrolytic enzymes. Microbiol Res 207:289–298

    CAS  PubMed  Google Scholar 

  • Mendes FB, Atala IPD, Thoméo JC (2017) Is cellulase production by solid-state fermentation economically attractive for the second generation ethanol production? Renew. Energy 114:525–533. https://doi.org/10.1016/j.renene.2017.07.062

    Article  CAS  Google Scholar 

  • Mliki A, Zimmermann W (1992) Purification and characterization of an intracellular peroxidase from Streptomyces cyaneus. Appl Environ Microbiol 58:916–919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamad H, Anis M, Wan Hasamudin WH. (2005). Energizing the wood-based industry in Malaysia. In: Proceedings of the 6th national seminar on the utilization of oil palm tree. Malaysia: Oil Palm Tree Utilization Committee (OPTUC); 6–13.

  • Mohamed AH, Youseif SH, El-Mageed FHA, Heikal NZ, Moussa TAA, Saleh SA (2017) Production of cellulase, exoglucanase and xylanase by different microorganisms cultivated on agricultural wastes. Res J Pharm Biol Chem Sci 8:435–452

    CAS  Google Scholar 

  • Montella S, Amore A, Faraco V (2015) Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development. Crit Rev Biotechnol 36:998–1009

    PubMed  Google Scholar 

  • Monssef RA, Hassan EA, Ramadan EM (2016) Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Ann Agricul Sci 61(1):145–154

    Google Scholar 

  • Morales J, Choi JS, Kim DS (2006) Production rate of propionic acid in fermentation of cheese whey with enzyme inhibitors. Environ Prog 25(3):228–234

    CAS  Google Scholar 

  • Mostafa NA (2001) Production of acetic acid and glycerol from salted and dried whey in a membrane cell recycle bioreactor. Energ Convers Manage 42(9):1133–1142

    CAS  Google Scholar 

  • Muhrizal S, Shamshuddin J, Fauziah I, Husni MAH (2006) Changes in iron-poor acid sulphate soil upon submergence. Geoderma 131:110–122

    CAS  Google Scholar 

  • Murthy PS, Naidu MM (2012) Sustainable management of coffee industry by-products and value addition – a review. Resour Conserv Recy 66:45–58

    Google Scholar 

  • Mussatto SI. (2009). Biotechnological Potential of Brewing Industry By-Products. In: Singh nee’ Nigam P., Pandey A. (eds) Biotechnology for Agro-Industrial Residues Utilization. Springer, Dordrecht. pp 313–326.

  • Mussatto SI, Machado EMS, Martins S, Teixeira JA (2011) Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol 4:661–672

    CAS  Google Scholar 

  • Nadar SS, Rao P, Rathod VK (2018) Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: a review. Food Res Int 108:309–330. https://doi.org/10.1016/j.foodres.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Nakajima-Kambe T, Katayama H, Higuchi K, Kawasaki Y, Fuji R (2008) High catalase production by Rhizobium radiobacter strain 2–1. J Biosci Bioeng 106:554–558

    CAS  PubMed  Google Scholar 

  • Nam KH, Kim SJ, Hwang KY (2009) Crystal structure of CelM2, a bifunctional glucanase–xylanase protein from a metagenome library. Biochem Biophys Res Commun 383:183–186

    CAS  PubMed  Google Scholar 

  • Nam KH, Lee WH, Rhee KH, Hwang KY (2010) Structural characterization of the bifunctional glucanase–xylanase CelM2 reveals the metal effect and substrate-binding moiety. Biochem Biophys Res Commun 391:1726–1730

    CAS  PubMed  Google Scholar 

  • Nandal P, Ravella SR, Kuhad RC (2013) Laccase production by Coriolopsiscaperata RCK2011: optimization under solid state fermentation by Taguchi DOE methodology. Sci Rep 3:1386

    PubMed  PubMed Central  Google Scholar 

  • Nigam P (2015) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611

    Google Scholar 

  • Nur MMA, Buma AGJ (2018) Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds. Wast Biomass Valor. https://doi.org/10.1007/s12649-018-0256-3

    Article  Google Scholar 

  • Nyerges Á, Csörgo B, Nagy I, Bálint B, Bihari P, Lázár V, Ápjok G, Umenhoffer K, Bogos B, Pósfai G, Pál C (2016) A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci 113:2502–2507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oosterveld A, Voragen AGJ, Schols HA (2002) Characterization of hop pectins shows the presence of an arabinogalactan-protein. Carbohyd Polym 49:407–413

    CAS  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259

    CAS  PubMed  Google Scholar 

  • Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485

    CAS  Google Scholar 

  • Palackal N, Lyon CS, Zaidi S, Luginbuhl P, Dupree P, Goubet F, Macomber JL, Short JM, Hazlewood GP, Robertson DE, Steer BA (2007) A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl Microbiol Biotechnol 74:113–124

    CAS  PubMed  Google Scholar 

  • Panesar PS, Kennedy JF, Gandhi DN, Bunko K (2007) Bio-utilization of whey for lactic acid production. Food Chem 105(1):1–14

    CAS  Google Scholar 

  • Passos CP, Silva RM, Da Silva FA, Coimbra MA, Silva CM (2009) Enhancement of the supercritical fluid extraction of grape seed oil by using enzymatically pre-treated seed. J Supercrit Fluids 48:225–229

    CAS  Google Scholar 

  • Panda SK, Mishra SS, Kayitesi E, Ray RC (2017) Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: biotechnology and scopes. Environ Res. https://doi.org/10.1016/j.envres.2015.12.035

    Article  Google Scholar 

  • Patel H, Gupte A (2016) Optimization of different culture conditions for enhanced laccase production and its purification from Tricholomagiganteum AGHP. Bioresour Bioprocess. https://doi.org/10.1186/s40643-016-0088-6

    Article  Google Scholar 

  • Patindol J, Wang L, Wang YJ (2007) Cellulase-assisted extraction of oligosaccharides from defatted rice bran. J Food Sci 72:C516–C521

    CAS  PubMed  Google Scholar 

  • Pensupa N, Jin M, Kokolski M, Archer DB, Du C (2013) A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour Technol 149:261–267. https://doi.org/10.1016/j.biortech.2013.09.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perusello CA, Zhang Z, Marzocchella A, Tiwari BJ (2017) Valorization of apple pomace by extraction of valuable compounds. Compr Rev Food Sci F 16:776–796

    Google Scholar 

  • Petruccioli M, Servili M, Montedoro GF, Federici F (1988) Development of the recycle for the olive-oil extraction process. Biotechnol Lett 10:55–60

    CAS  Google Scholar 

  • Pezzellaa C, Giacobellia VG, Letterab V, Olivieric G, Cicatielloa P, Sanniaa G, Piscitelli A (2017) A step forward in laccase exploitation: recombinant production and evaluation of techno-economic feasibility of the process. J Biotechnol 259:175–181

    Google Scholar 

  • Pinotti LM, Benevides LC, Lira TS, de Oliveira JP, Cassini STA (2018) Biodiesel production from oily residues containing high free fatty acids. Waste Biomass Valor 9:293–299

    CAS  Google Scholar 

  • Piscitelli A, Pezzella C, Giardina P, Faraco V, Sannia G (2010) Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1(4):254–264

    Google Scholar 

  • Piscitelli A, Pezzella C, Lettera V, Giardina P, Faraco V, Sannia G. (2013). Fungal laccases: structure, function and application. In: Maria de Lourdes, T.M., Rai, Polizeli Mahendra (Eds.), Fungal Enzymes: Progress and Prospects. CRC Press, pp. 113–151

  • Piu LD, Tassoni A, Serrazanetti DI, Ferri M, Babini E, Tagliazucchi D, Gianotti A (2014) Exploitation of starch industry liquid by-product to produce bioactive peptides from rice hydrolyzed proteins. Food Chem 155:199–206

    Google Scholar 

  • Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manage 110:48–68

    CAS  PubMed  Google Scholar 

  • Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2011.06.014

    Article  PubMed  Google Scholar 

  • Radenkovs V, Juhnevica-Radenkova K, Górnaś P, Seglina D (2018) Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products. Trends Food Sci Technol 77:64–76. https://doi.org/10.1016/j.tifs.2018.05.013

    Article  CAS  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2015.10.008

    Article  PubMed  Google Scholar 

  • Reisinger M, Tirpanalan O, Pruckler M, Huber F, Kneifel W, Novalin S (2013) Wheat bran biorefinery—a detailed investigation on hydrothermal and enzymatic treatment. Bioresour Technol 144:179–185

    CAS  PubMed  Google Scholar 

  • Renard CMGC (2018) Extraction of bioactives from fruit and vegetables: state of the art and perspectives. Lwt 93:390–395. https://doi.org/10.1016/j.lwt.2018.03.063

    Article  CAS  Google Scholar 

  • Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ (2010) Designer laccases: a vogue for high-potential fungal enzymes. Trends Biotechnol 28:63–72

    CAS  PubMed  Google Scholar 

  • Rodriguez-Couto S, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25(6):558–569

    Google Scholar 

  • Romero I, Ruiz E, Castro E, Moya M (2010) Acid hydrolysis of olive tree biomass. Chem Eng Res Design 88:633–640

    CAS  Google Scholar 

  • Romero R, Gomez-Basauri J. (2003). Yeast and yeast products, past, present and future: From flavors to nutrition and health. In: Lyons TP, Jacques KA (eds) Nutritional Biotechnology in the Food and Feed Industries. Proceedings of Alltech’s 19th International Symposium. Nottingham University Press, Loughborough, Leics, UK. pp. 365–378.

  • Rui H, Zhang L, Li Z, Pan Y (2009) Extraction and characteristics of seed kernel oil from white pitaya. J Food Eng 93:482–486. https://doi.org/10.1016/j.jfoodeng.2009.02.016

    Article  CAS  Google Scholar 

  • Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Appl Sci J 11:70–81

    CAS  Google Scholar 

  • Ruviaro AR, Barbosa P de PM, Macedo GA. (2018). Enzyme-assisted biotransformation increases hesperetin content in citrus juice by-products. Food Res. Int.

  • Sadh PK, Duhan S, Duhan JS. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess

  • Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17:512–531. https://doi.org/10.1111/1541-4337.12330

    Article  CAS  PubMed  Google Scholar 

  • Salètes S, Siregar FA, Caliman JP, Liwang T (2004) Ligno-cellulose composting: case study on monitoring oil palm residuals. Compost Sci Util 12(4):372–382

    Google Scholar 

  • Sancho AI, Bartolomé B, Gómez-Cordovés C, Williamson G, Faulds CB (2000) Release of ferulic acid from cereal residues by barley enzymatic extracts. J Cereal Sci 34:173–179

    Google Scholar 

  • Santos M, Rodrigues A, Teixeira JA (2005) Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f). Biochem Eng J 25:1–6

    CAS  Google Scholar 

  • Saqibhussain H, Muhammad JA, Muhammad G, Muhammad A, Nasir MM, Raja TM, Shehnaz Z, Nasir M (2015) Solid state fermentation for the production of laccase by Neurosporasitophila using agro-wastes and its partial purification. I J Biochem Biotechn 4(5):564–573

    Google Scholar 

  • Satari B, Karimi K (2018) Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour Conserv Recycl 129:153–167. https://doi.org/10.1016/j.resconrec.2017.10.032

    Article  Google Scholar 

  • Saxena J, Tanner RS (2012) Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J Microbiol Biotechnol 28:1553–1561

    CAS  PubMed  Google Scholar 

  • Severini C, Azzollini D, Jouppila K, Jussi L, Derossi A, de Pilli T (2015) Effect of enzymatic and technological treatments on solubilisation of arabinoxylans from brewer's spent grain. J Cereal Sci 65:162–166

    CAS  Google Scholar 

  • Shalaby EA, Shanab SMM (2013) Antiradical and antioxidant activities of different spirulina platensis extracts against DPPH and ABTS radical assay. J Marine Biol Oceanogr 2:1–8

    Google Scholar 

  • Shanab SMM, Hanafy EA, Shalaby EA (2014) Biodiesel production and antioxidant activity of different Egyptian Date Palm seed cultivars. Asian J Biochem 9(3):119–130

    CAS  Google Scholar 

  • Shanab SMM, Shalaby EA, Lightfoot DA, El-Shemy HA. (2010). Allelopathic effects of water hyacinth (Eichhornia crassipes). Plos ONE,5(10)

  • Shanab SMM, Hanafy EA, Shalaby EA (2018) Water Hyacinth As Non-Edible Source For Biofuel Production. Waste Biomass Valor 9:255–264

    CAS  Google Scholar 

  • Shao X, Lynd L, Bakker A, LaRoche R, Wyman C (2010) Reactor scale up for biological conversion of cellulosic biomass to ethanol. Bioprocess Biosyst Eng 33:485–493

    CAS  PubMed  Google Scholar 

  • Sharif MK, Butt MS, Anjum FM, Khan SH (2013) Rice bran: a novel functional ingredient. Crit Rev Food Sci Nutr 54(6):807–816

    Google Scholar 

  • Shen F, Saddler JN, Liu R, Lin L, Deng S, Zhang Y, Yang G, Xiao H, Li Y (2011) Evaluation of Steam pretreatment on sweet sorghum bagasse for enzymatic hydrolysis and bioethanol production. Carbohydr Polym 86(4):1542–1548

    CAS  Google Scholar 

  • Shi S, Liang Y, Zhang MM, Ang EL, Zhao H (2016) A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng 33:19–27

    CAS  PubMed  Google Scholar 

  • Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment–a review. Renew Sustain Energy Rev 54:217–234

    CAS  Google Scholar 

  • Si T, Luo Y, Bao Z, Zhao H (2015) RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering. ACS Synth Biol 4:283–291

    CAS  PubMed  Google Scholar 

  • Singh A, Banarjee R (2013) Peptide enriched functional food adjunct from soy whey: a statistical optimization study. Food Sci Biotechnol 22:65–71

    CAS  Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):174

    PubMed  PubMed Central  Google Scholar 

  • Soccol CR, da Costa ESF, Letti LAJ, Karp SG, Woiciechowski AL, de Souza Vandenberghe LP (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innovat 1(1):52–71

    Google Scholar 

  • Soukoulis C, Aprea E (2012) Cereal bran fractionation: processing techniques for the recovery of functional components and their applications to the food industry. Recent Pat Food Nutr Agric 4:61–77

    CAS  PubMed  Google Scholar 

  • Souza MF, Batista PS, Regiani I, Liborio JBL, de Souza DPF (2000) Rice hull-derived silica: applications in portland cement and mullite whiskers. Mat Res 3(2):25–30

    Google Scholar 

  • Souza MS, Aguieiras ECG, Silva MAP, Langone MAP (2009) Biodiesel synthesis via esterification of feedstock with high content of free fatty acids. Appl Biochem Biotechnol 154:253–267

    CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424

    CAS  Google Scholar 

  • Stavropoulos KP, Kopsahelis A, Zafiri C, Kornaros M (2016) Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste Biomass Valor 7(4):753–764

    CAS  Google Scholar 

  • Stenmark Å, Jensen C, Quested T, Moates G. (2016). Estimates of European food waste levels, Fusions Eu

  • Strong PJ (2011) Improved laccase production by Trametespubescens MB89 in distillery wastewaters. Enzyme Res. https://doi.org/10.4061/2011/379176

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumathi S, Chai SP, Mohamed AR (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sust Energy Rev 12:2404–2421

    CAS  Google Scholar 

  • Szponar B, Pawlik KJ, Gamian A et al (2003) Protein fraction of barley spent grain as a new simple medium for growth and sporulation of soil Actinobacteria. Biotechnol Lett 25:1717–1721

    CAS  PubMed  Google Scholar 

  • Taha M, Shahsavari E, Al Hothaly K, Mouradov A, Smith AT, Ball AS, Adetutu EM (2015) Enhanced biological straw saccharification through co-culturing of lignocellulose degrading microorganism Appl. Biochem Biotechnol 175:3709–3728

    CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Molecul Scie. https://doi.org/10.3390/ijms9091621

    Article  Google Scholar 

  • Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161. https://doi.org/10.1007/978-0-387-75213-6

    Article  CAS  Google Scholar 

  • Tikhonov VE, López-Lorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78

    CAS  PubMed  Google Scholar 

  • Torres-Mancera MT, Cordova-López J, Rodríguez-Serrano G, Roussos S, Ramírez-Coronel MA, Favela-Torres E, Saucedo-Castañeda G (2011) Enzymatic extraction of hydroxycinnamic acids from coffee pulp. Food Technol Biotechnol 49(3):369–373

    CAS  Google Scholar 

  • Tuveng TR, Hagen LH, Mekasha S, Frank J, Arntzen MØ, Vaaje-Kolstad G, Eijsink VG (2017) Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200. Biochim Biophys Acta 1865:414–421

    CAS  Google Scholar 

  • Uddin ME, Alam MG, Ahmad T, Mahmud S, Nazmuzzaman M, Alam MF, Karim MR, Barman NC, Arif-uz-Zaman M, Ahammed T, Faruquee HM (2016) Screening, optimization and exploration of microbial enzymes with special characteristics for biotechnological applications. Res J Life Sci Bioinform Pharm Chem Sci 2:178–191

    Google Scholar 

  • Unuofin JO, Okoha AI, Nwodo UU (2019) Utilization of agroindustrial wastes for the production of laccase by Achromobacterxylosoxidans HWN16 and Bordetellabronchiseptica HSO16. J Environm Managem 231:222–231

    CAS  Google Scholar 

  • Vanderhaegen B, Neven H, Coghe S et al (2003) Bioflavoring and beer refermentation. Appl Microbiol Biotechnol 62:140–150

    CAS  PubMed  Google Scholar 

  • Valentino F, Riccardi C, Campanari S, Pomata D, Majone M (2015) Fate of β-hexachlorocyclohexane in the mixed microbial cultures (MMCs) three-stage polyhydroxyalkanoates (PHA) production process from cheese whey. Bioresour Technol 192:304–311

    CAS  PubMed  Google Scholar 

  • Vervoort Y, Linares AG, Roncoroni M, Liu C, Steensels J, Verstrepen KJ (2017) High-throughput system-wide engineering and screening for microbial biotechnology. Curr Opin Biotechnol 46:120–125

    CAS  PubMed  Google Scholar 

  • Vidal G, Carvalho A, Méndez R, Lema JM (2000) Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresour Technol 74(3):231–239

    CAS  Google Scholar 

  • Vieira E, Teixeira J, Ferreira IMPLVO (2016) Valorization of brewers’ spent grain and spent yeast through protein hydrolysates with antioxidant properties. Eur Food Res Technol 242:1975–1984

    CAS  Google Scholar 

  • Vieira EF, da Silva DD, Carmo H, Ferreira IMPLVO (2017) Protective ability against oxidative stress of brewers’ spent grain protein hydrolysates. Food Chem 228:602–609

    CAS  PubMed  Google Scholar 

  • Virmond E; Rocha JD; Moreira RFPM; Jose HJ. (2013). Valorization of agro-industrial solid residues and residues from biofuel production chains by thermochemical conversion: a review, citing Brazil as a case study. Braz J Chem Eng, 30(2).

  • Vittaladevaram V (2017) Fermentative production of microbial enzymes and their applications: present status and future prospects. J Appl Biol Biotechnol 5:90–94

    CAS  Google Scholar 

  • Thammakiti S, Suphantharika M, Phaesuwan T, Verduyn C (2004) Preparation of spent brewer's yeast β-glucans for potential applications in the food industry. Int J Food Sci Technol 39(1):21–29

    CAS  Google Scholar 

  • Thota SP, Badiya PK, Yerram S, Vadlani PV, Pandey M, Golakoti NR, Ramamurthy SS (2017) Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses. Renew Energy 103:766–773

    CAS  Google Scholar 

  • Waghmare PR, Patil SM, Jadhav SL, Jeon BH, Govindwar SP (2018) Utilization of agricultural waste biomass by cellulolytic isolate Enterobacter sp SUK-Bio. Agric Nat Resour 52:399–406. https://doi.org/10.1016/j.anres.2018.10.019

    Article  Google Scholar 

  • Walker GE, Dunbar B, Hunter IS, Nimmo HG, Coggins JR (1995) A catalase from Streptomyces coelicolor A3(2). Microbiol 141:1377–1383

    CAS  Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30(6):1447–1457

    CAS  PubMed  Google Scholar 

  • Wan C, Li Y, Shahbazi A, Xiu S (2008) Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. Appl Biochem Biotechnol 145(1–3):111–119

    CAS  PubMed  Google Scholar 

  • Wang D, Sakoda A, Suzuki M (2001) Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour Technol 78:293–300

    CAS  PubMed  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sun B, Liu Y, Zhang H (2014) Optimization of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chem 150:482–488

    CAS  PubMed  Google Scholar 

  • Wang Y, Cao X (2011) Enzymatic synthesis of fatty acid ethyl esters by utilizing camellia oil soapstocks and diethyl carbonate. Bioresour Technol 102:10173–10179

    CAS  PubMed  Google Scholar 

  • Wang SS, Ning YJ, Wang SN, Zhang J, Zhang GQ, Chen QJ (2017) Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. Int J Biol Macromol 95:920–927

    CAS  PubMed  Google Scholar 

  • Wanyo P, Meeso N, Siriamornpun S (2014) Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem 157:457–463

    CAS  PubMed  Google Scholar 

  • Wei T, Cheng BY, Liu JZ (2016) Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Sci Rep 6:30080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DB (2012) Processive and nonprocessive cellulases for biofuel production - Lessons from bacterial genomes and structural analysis. Appl Microbiol Biotechnol 93:497–502. https://doi.org/10.1007/s00253-011-3701-9

    Article  CAS  PubMed  Google Scholar 

  • Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44

    CAS  PubMed  Google Scholar 

  • Wu TY et al (2007) Palm oil mill effluent (POME) treatment and bio resources recovery using ultrafiltration membrane: effect of pressure on membrane fouling, Biochem. Eng J 35:309–317

    CAS  Google Scholar 

  • Wu TY et al (2009) A holistic approach to managing palm oil effluent (POME): biotechnological advances in the sustainable reuse of POME. Biotechnol Adv 27:40–52

    PubMed  Google Scholar 

  • Wu TY, Mohammad AW, Jahim J, Anuar N (2010) Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. J Environ Manage 91:1467–1490

    CAS  PubMed  Google Scholar 

  • Wyman CE (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Prog 19:254–262

    CAS  PubMed  Google Scholar 

  • Xiros C, Christakopoulos P (2012) Biotechnological potential of brewers spent grain and its recent applications. Waste Biomass Valori 3:213–232

    Google Scholar 

  • Xu X, Lin M, Zang Q, Shi S (2018) Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresour Technol 247:88–95. https://doi.org/10.1016/j.biortech.2017.08.192

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Xu X, Ng TB, Lin J, Ye X (2016) Laccase gene family in Cerrena sp HYB07: sequences, heterologous expression and transcriptional analysis. Molecules 21(8):1017

    PubMed Central  Google Scholar 

  • Yu P, Maenz DD, McKinnon JJ, Racz VJ, Christensen DA (2002) Release of ferulic acid from oat hulls by Aspergillus ferulic acid esterase and Trichoderma xylanase. J Agric Food Chem 50:1625–1630

    CAS  PubMed  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl microbiol biotechnol 56(1e2):17–34

    CAS  PubMed  Google Scholar 

  • Zanichelli D, Carloni F, Hasanaj E, D’Andrea N, Filippini A, Setti L (2007) Production of ethanol by an integrated valorization of olive oil byproducts: the role of phenolic inhibition. Environ Sci Pollut Res 14:5–6

    CAS  Google Scholar 

  • Zeng HW, Cai YJ, Liao XR, Zhang F, Zhang DB (2011) Production, characterization, cloning and sequence analysis of monofunctional catalase from Serratia marcescens SYBC08. J Basic Microbiol 51:205–214

    CAS  PubMed  Google Scholar 

  • Zeng S, Zhao J, Xia L (2017) Simultaneous production of laccase and degradation of bisphenol A with Trametesversicolor cultivated on agricultural wastes. Bioproc biosyst eng 40(8):1237–1245

    CAS  Google Scholar 

  • Zhang AL, Luo XJ, Zhang TY, Pan YN (2009) Recent advances on the GAP promoter-derived expression system of Pichia pastoris. Mol Biol Rep 36:1611–1619

    CAS  PubMed  Google Scholar 

  • Zhang G, Lin Y, Qi X, Li L, Wang Q, Ma Y (2015) TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes. ACS Synth Biol 4:1101–1111

    CAS  PubMed  Google Scholar 

  • Zhang K, Duan X, Wu J (2016) Multigene disruption in undomesticated Bacillus subtilis ATCC 6051 using the CRISPR/Cas9 system. Sci Rep 6:27943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XQ, Xue YF, Zhao AM, Du GC, Xu ZH, Chen J (2005) Purification and characterization of a monofunctional catalase from an alkaliphilic Bacillus sp. F26. Chin J Biotechnol 21:71–77

    CAS  Google Scholar 

  • Zhang Z, Wang M, Gao R, Yu X, Chen G (2017) Synergistic effect of thermostable b -glucosidase TN0602 and cellulase on cellulose hydrolysis. 3 Biotech 7:1–7

    Google Scholar 

  • Zhao S, Wang J, Bu D, Liu K, Zhu Y, Dong Z, Yu Z (2010) Novel glycoside hydrolases identified by screening a Chinese Holstein dairy cow rumen-derived metagenome library. Appl Environ Microbiol 76:6701–6705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Zhao W, Guo N, Lin FL, Tian J, Wu LS, Zhou HB (2012) Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinant b-mananase by Pichiapastoris. Bioresour Technol 118:257–264

    CAS  PubMed  Google Scholar 

  • Zhou F, Wu Z, Chen C, Han J, Ai L, Guo B (2014) Exopolysaccharides produced by Rhizobium radiobacter S10 in whey and their rheological properties. Food Hydrocolloid 36:362–368

    CAS  Google Scholar 

Download references

Acknowledgements

The authors N.S. and P.K.M thankfully acknowledges Department of Chemical Engineering and Technology, IIT (BHU) Varanasi for providing their Post-Doctoral Fellowships. G. Molina acknowledge ‘Fundação de Amparo à Pesquisa do Estado de Minas Gerais’ (Fapemig – Process number APQ-01056-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Molina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barcelos, M.C.S., Ramos, C.L., Kuddus, M. et al. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnol Lett 42, 1799–1827 (2020). https://doi.org/10.1007/s10529-020-02957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02957-3

Keywords

Navigation