Skip to main content
Log in

Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft-bottom turbid lagoon

  • Research Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species are often hypothesized to have superior performance traits. We compared stress tolerance (as change in biomass) of the invasive macroalgae Codium fragile ssp. tomentosoides and Gracilaria vermiculophylla to the native macroalgae Fucus vesiculosus, Agardhiella subulata, Hypnea musciformis and Ulva curvata in Hog Island Bay, a shallow lagoon in Virginia, USA. We hypothesized that the success of the two aliens is due to their high tolerances of turbidity, sedimentation, desiccation, grazing and nutrient enrichment. Like many lagoons, Hog Island Bay is characterized by extensive intertidal mudflats, high turbidity and sedimentation, and high densities of omnivorous mud snails. Nutrient enrichment may also become a problem as land use practices in adjacent watersheds change. Contrary to our hypothesis, C. fragile was less resistant to sedimentation, desiccation and grazing than other algae and had low growth at all light and nutrient levels. This suggests that any superior performance of this invasive species compared to native algae is probably limited to microhabitats where stress is minimal and where bivalve shells facilitate recruitment and long-term persistence. In contrast, G. vermiculophylla was resistant to desiccation, burial and grazing, and was not negatively influenced by either high or low light or nutrient levels. These traits reflect the current success of G. vermiculophylla in already invaded lagoons and estuaries, and indicates that it will likely continue its spread in European and North American turbid and tidal soft-sediment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker KM, Chapman ARO (1990) Feeding preferences of periwinkles among four species of Fucus. Mar Biol 106:113–118

    Article  Google Scholar 

  • Boudouresque CF, Verlaque M (2002) Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. Mar Poll Bull 44:32–38

    Article  CAS  Google Scholar 

  • Bourgues S, Auby I, De Wit R, Labourg P-J (1996) Differential anaerobic decomposition of seagrass (Zostera noltii) and macroalgal (Monostroma obscurum) biomass from Arcachon Bay (France). Hydrobiologia 329:121–131

    Article  CAS  Google Scholar 

  • Camilleri J (1989) Leaf choice by crustaceans in a mangrove forest in Queensland. Mar Biol 72:153–159

    Google Scholar 

  • Carlton JT, Scanlon JA (1985) Progression and dispersal of an introduced alga: Codium fragile ssp. tomentosoides (Chlorophyta) on the Atlantic coast of North America. Bot Mar 28:155–165

    Google Scholar 

  • Castel J, Caumette P, Herbert R (1996) Eutrophication gradients in coastal lagoons as exemplified by the bassin d’Arcachon and the Etang du Prevost. Hydrobiologia 329:9–28

    Article  Google Scholar 

  • Cebrián J, Duarte CM (1994) The dependence of herbivory on growth rate in natural plant communities. Functional Ecol 8:518–525

    Article  Google Scholar 

  • Chapman AS (1999) From introduced species to invader: what determines variation in the success of Codium fragile ssp. tomentosoides (Chlorophyta) in the North Atlantic Ocean? Helgolander Meeresuntersuchungen 52:277–289

    Article  Google Scholar 

  • Connell JH (1961a) Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecol Monogr 31:61–104

    Article  Google Scholar 

  • Connell JH (1961b) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecol Monogr 42:710–723

    Google Scholar 

  • Cowper SW (1978) The drift algae community of seagrass beds in Redfish Bay, Texas. Contr Mar Sci 21:125–132

    Google Scholar 

  • Denny M, Gaines SD (1990) On the prediction of maximal intertidal wave forces. Limnol Oceanogr 35:1–15

    Google Scholar 

  • Doty MS (1946) Critical tide factors that are correlated with the vertical distribution of marine algae and other organisms along the Pacific coast. Ecology 27:315–328

    Article  Google Scholar 

  • Duarte CM (1992) Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37:882–889

    Article  CAS  Google Scholar 

  • Duffy JE, Hay ME (1991) Amphipods are not all created equal: a reply to Bell. Ecology 72:354–358

    Article  Google Scholar 

  • Enriquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471

    Article  Google Scholar 

  • Fong P, Desmond JS, Zedler JB (1997) The effect of a horn snail on Ulva expansa (Chlorophyta): consumer or facilitator of growth? J Phycol 33:353–359

    Article  Google Scholar 

  • Fralick RA, Mathieson AC (1973) Ecological studies of Codium fragile in New England, USA. Mar Biol 19:127–132

    Article  Google Scholar 

  • Geertz-Hansen O, Sand-Jensen K, Hansen DF, Christiansen A (1993) Growth and grazing control of abundance of the marine macroalgae, Ulva lactuca L. in a eutrophic Danish estuary. Aquat Bot 46:101–109

    Article  Google Scholar 

  • Giannotti AL, McGlathery KJ (2001) Consumption of Ulva lactuca (Chlorophyta) by the omnivorous mud snail Ilyanassa obsoleta. J Phycol 37:1–7

    Article  Google Scholar 

  • Goshorn D, McGinty M, Kennedy C, Jordan C, Wazniak C, Schwenke K, Coyne K (2001) An examination of benthic macroalgae communities as indicators of nutrients in middle Atlantic coastal estuaries - Maryland component. Final report 1998–1999, Maryland

  • Hanisak MD (1979a) Growth patterns of Codium fragile ssp. tomentosoides in response to temperature, irradiance, salinity and nitrogen source. Mar Biol 50:319–332

    Article  CAS  Google Scholar 

  • Hanisak MD (1979b) Nitrogen limitation of Codium fragile ssp. tomentosoides as determined by tissue analysis. Mar Biol 50:333–337

    Article  CAS  Google Scholar 

  • Hay ME, Renaud PE, Fenical W (1988) Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses. Oecologia 75:246–252

    Article  Google Scholar 

  • Hillson CJ (1976) Codium invades Virginia waters. Bull Torrey Bot Club 103:266–267

    Article  Google Scholar 

  • Kamermans P, Malta EJ, Verschuure JM, Lentz LF, Schrijvers L (1998) The role of cold resistance and burial for survival and spring initiation of an Ulva spp. (Chlorophyta) bloom in a eutrophic lagoon (Veerse Meer lagoon, The Netherlands). Mar Biol 131:45–51

    Article  Google Scholar 

  • Kelaher BP, Levinton JS, Hoch JM (2003) Foraging by the mud snail, Ilyanassa obsoleta (Say), modulates spatial variation in benthic community structure. J Exp Mar Biol Eco 92:139–157

    Article  Google Scholar 

  • Krause-Jensen D, Sand-Jensen K (1998) Light attenuation and photosynthesis of aquatic plant communities. Limnol Oceanogr 43:396–407

    Article  CAS  Google Scholar 

  • Lawson S (2003) Sediment suspension as a control of light availability in a coastal lagoon. Dissertation, University of Virginia, Department of Environmental Science, Charlottesville, Virginia

    Google Scholar 

  • Lewis JR (1964) The ecology of rocky shores. English Universities Press, London

    Google Scholar 

  • Littler MM (1980) Morphological form and photosynthetic performance of marine macroalgae: tests of a functional/form hypothesis. Bot Mar 22:161–165

    Google Scholar 

  • Malinowski KC, Ramus J (1973) Growth of the green alga Codium fragile in a Conneticut estuary. J Phycol 9:102–110

    Article  Google Scholar 

  • McGlathery KJ, Anderson I, Tyler C (2001) Magnitude and variability of benthic and pelagic metabolism in a temperate coastal lagoon. Mar Ecol Prog Ser 216:1–15

    CAS  Google Scholar 

  • McGlathery KJ (1992) Physiological controls on the distribution of the macroalgae Spyridea hypnoides: patterns along a eutrophication gradient in Bermuda. Mar Ecol Prog Ser 87:173–182

    Google Scholar 

  • McManus J (1998) Temporal and spatial variations in estuarine sedimentation. Estuaries 21:622–634

    Article  Google Scholar 

  • Meinesz A (1999) Killer algae – the true tale of a biological invasion. The University of Chicago Press, Chicago

    Google Scholar 

  • Myers JH, Bazely DR (2003) Ecology and control of introduced plants. Ecology, Biodiversity, and Conservation Series, Cambridge University Press, Cambridge

    Google Scholar 

  • Nyberg C, Wallentinus I (2005) Can species traits be used to predict marine macroalgal introductions? Biological Invasions 7:265–279

    Article  Google Scholar 

  • Oertel GF (2001) Hypsographic, hydro-hypsographic and hydrological analysis of coastal bay environments, Great Machipongo Bay, Virginia. J Coast Res 17:775–783

    Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Article  Google Scholar 

  • Paine RT, Levin SA (1981) Intertidal landscapes: disturbance and the dynamics of pattern. Ecol Monogr 51:145–178

    Article  Google Scholar 

  • Pedersen MF (1995) Nitrogen limitation of photosynthesis and growth: Comparison across aquatic plant communities in a Danish estuary (Roskilde Fjord). Ophelia 41:261–272

    Google Scholar 

  • Pedersen MF, Borum J (1996) Nutrient control of algal growth i estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplanton and species of macroalgae. Mar Ecol Prog Ser 142:261–272

    CAS  Google Scholar 

  • Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155–163

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramus J, Beale SI, Mauzerall D (1976a) Changes in photosynthetic pigment concentration in seaweeds as a function of water depth. Mar Biol 37:223–229

    Article  CAS  Google Scholar 

  • Ramus J, Beale SI, Mauzerall D (1976b) Correlation of changes in pigment concentration in seaweeds as a function of water detph. Mar Biol 37:231–238

    Article  CAS  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1660

    Article  Google Scholar 

  • Roa R (1992) Design and analysis of multiple-choice feeding-preference experiments. Oecologia 89:509–515

    Google Scholar 

  • Rosinski JL (2004) Controls on benthic biodiversity and trophic interactions in a temperate coastal lagoon. Dissertation, University of Virginia, Department of Environmental Science, Charlottesville, Virginia

    Google Scholar 

  • Rueness J (2005) Life history and molecular sequences of Gracilaria vermiculophylla (Gracilariales, Rhodophyta), a new introduction to European waters. Phycologia 44:120–128

    Article  Google Scholar 

  • Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632

    Google Scholar 

  • Santelices B, Vasquez J, Ohme U, Fonck E (1984) Managing wild crops of Gracilaria in central Chile. Hydrobiologia 116/117:77–89

    Article  Google Scholar 

  • Scheibling RE, Anthony SX (2001) Feeding, growth and reproduction of sea urchins (Strongylocentrotus droebachiensis) on single and mixed diets of kelp (Laminaria spp.) and the invasive alga Codium fragile ssp. tomentosoides. Mar Biol 139:139–146

    Article  Google Scholar 

  • Schoellhamer DH (1996) Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuar Coast Shelf Sci 43:533–548

    Article  Google Scholar 

  • Stephenson TA, Stephenson A (1949) The universal features of zonation between tide-marks on rocky coasts. J Ecol 38:289–305

    Google Scholar 

  • Taylor D, Nixon S, Granger S, Buckley B (1995) Nitrogen limitation and the eutrophication of coastal lagoons. Mar Ecol Prog Ser 127:235–244

    CAS  Google Scholar 

  • Thomsen MS (2004a) Macroalgal distribution patterns and ecological performances in a tidal coastal lagoon, with emphasis on the non-indigenous Codium fragile ssp. tomentosoides. Dissertation, University of Virginia, Department of Environmental Science, Charlottesville, Virginia

    Google Scholar 

  • Thomsen MS (2004b) Species, thallus size and substrate determine macroalgal break forces and break places in a low energy soft bottom lagoon. Aquat Bot 80:153–161

    Article  Google Scholar 

  • Thomsen MS, Gurgel CFD, Fredericq S, McGlathery KJ (2005) Gracilaria vermiculophylla (Rhodophyta, Gracilariales) in Hog Island Bay, Virginia: a cryptic alien and invasive macroalgae and taxonomic corrections. J. Phycol. 42: 139–141

    Google Scholar 

  • Thomsen MS, McGlathery KJ (2005) Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuar Coast Shelf Sci 62:63–73

    Article  Google Scholar 

  • Thomsen MS, McGlathery KJ (2006) Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs. J Exp Mar Biol Ecol. 328:22–34

    Google Scholar 

  • Thomsen MS, McGlathery K, Tyler AC (2006) Macroalgal distribution pattern in a shallow, soft-bottom lagoon, Virginia with emphasis on the alien Gracilaria vermiculophylla and Codium fragile. Estuaries and Coasts 29:470–478

  • Thorne-Miller B, Harlin MM, Brady-Campbell MM, Dworetzky BA (1983) Variations in the distribution and biomass of submerged macrophytes in five coastal lagoons in Rhode Island, USA. Bot Mar 26:231–242

    Article  Google Scholar 

  • Trowbridge CD (1996) Demography and phenology of the intertidal green alga Codium setchellii: the enigma of local scarcity on sand-influenced rocky shores. Mar Biol 127:341–351

    Article  Google Scholar 

  • Trowbridge CD (1998) Ecology of the green macroalga Codium fragile (Suringar) Hariot 1889: invasive and non-invasive subspecies. Oceanogr Mar Biol Ann Rev 36:1–64

    Google Scholar 

  • Tyler AC (2002) Impact of benthic algae on dissolved organic nitrogen in a temperate, coastal lagoon. Dissertation, University of Virginia, Department of Environmental Science, Charlottesville, Virginia

    Google Scholar 

  • Tyler AC, McGlathery KJ (2003) Benthic algae control sediment-water column fluxes of organic and inorganic nitrogen compounds in a temperate lagoon. Limno Oceanogr 48:2125–2137

    Article  CAS  Google Scholar 

  • Tyler AC, McGlathery KJ, Anderson IC (2001) Macroalgal mediation of dissolved organic nitrogen fluxes in a temperate coastal lagoon. Estuar Coast Shelf Sci 53:155–168

    Article  CAS  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology – their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Wallentinus I (1984) Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar Biol 80:215–225

    Article  CAS  Google Scholar 

  • Wallentinus I, Nyberg C, Rueness J (2004) Gracilaria vermiculophylla in Göteborg, Sweden. In: Programme & Abstracts, 13th International Seaweed Symposium, June 20–25, Bergen, Norway: 138

  • Williams SL, Carpenter RC (1988) Nitrogen-limited primary productivity of coral reef algal turfs: potential contribution of ammonium excreted by Diadema antillarum. Mar Ecol Prog Ser 47:145–154

    CAS  Google Scholar 

  • Worm B, Reusch TBH, Lotze HK (2000) In situ nutrient enrichment: methods for marine benthic ecology. Internat Rev Hydrobiol 85:359–375

    Article  CAS  Google Scholar 

  • Yokoya NS, Kakita H, Obika H, Kitamura T (1999) Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia 398/399:339–347

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of K. Overman, J. Restein and P. Smith. The Virginia Coast Reserve of the Nature Conservancy provided access to study sites. This material is based upon work supported by the National Science Foundation under Grants No. DEB-9411974 and DEB-0080381 and by the USDA under grant (CSREES 2001–35101–09873). M.␣Thomsen was further supported by the Danish Research Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Thomsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, M.S., McGlathery, K.J. Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft-bottom turbid lagoon. Biol Invasions 9, 499–513 (2007). https://doi.org/10.1007/s10530-006-9043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-006-9043-3

Keywords

Navigation