Skip to main content

Advertisement

Log in

Anthropogenic disturbance of coastal habitats promotes the spread of the introduced scleractinian coral Oculina patagonica in the Mediterranean Sea

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The extensive human-mediated modifications of shallow coastal habitats drastically alter selection regimes and may assist alien invasions. The preferential presence of a non-indigenous scleractinian coral (Oculina patagonica) on anthropogenic hard substrata was investigated in a highly disturbed coastal area, along the eastern Saronikos Gulf (Aegean Sea, Eastern Mediterranean). Although the species occurred on both natural and anthropogenic substrata at similar frequencies, its abundance was substantially higher on the latter. The species was present all along the shallow (0.5–5 m) infralittoral zone of the studied coastline, and its percent cover even exceeded 50 % at a site of anthropogenic hard substratum. The occupancy of the species declined with distance from a highly disturbed industrialized/urbanized area (Athens metropolitan coastal front and the port of Piraeus). Space availability as a result of habitat modification appears to have been an important factor enhancing the coral’s abundance in this area. The ongoing degradation of the coastal zone, as a combined effect of coastal pollution, proliferation of artificial substrata and overgrazing seems to be paving the way to this new invasion in the Aegean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaaki F (eds) Proceedings of the second international symposium information theory. Akademiai Kidao, Budapest

    Google Scholar 

  • Akaike H (1983) Information measures and model selection. Bull Intern Stat Inst 44:277–290

    Google Scholar 

  • Alpert P (2006) The advantages and disadvantages of being introduced. Biol Invasions 8:1523–1534

    Article  Google Scholar 

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invisibility and the role of environmental stress in the spread of nonnative plants. Perspect Plant Ecol Evol Syst 3:52–66

    Article  Google Scholar 

  • Armoza-Zvuloni R, Segal R, Kramarsky-Winter E, Loya Y (2011) Repeated bleaching events may result in high tolerance and notable gametogenesis in stony corals: Oculina patagonica as a model. Mar Ecol Prog Ser 426:149–159

    Article  Google Scholar 

  • Beenaerts N, Vanden Berghe E (2005) Comparative study of three transect methods to assess coral cover, richness and diversity. West Indian Ocean J Mar Sci 4:29–37

    Google Scholar 

  • Bulleri F, Airoldi L (2005) Artificial marine structures facilitate the spread of a non-indigenous green alga, Codium fragile ssp. tomentosoides, in the north Adriatic Sea. J Appl Ecol 42:1063–1072

    Article  Google Scholar 

  • Bulleri F, Chapman MG (2010) The introduction of coastal infrastructure as a driver of change in marine environments. J Appl Ecol 47:26–35

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodal inference, 2nd edn. Springer, New York

    Google Scholar 

  • Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97:449–458

    Article  Google Scholar 

  • Carpenter RC, Edmunds PJ (2006) Local and regional scale recovery of Diadema promotes recruitment of scleractinian corals. Ecol Lett 9:271–280. doi:10.1111/j.1461-0248.2005.00866.x

    Article  PubMed  Google Scholar 

  • Catford JA, Vesk PA, White MD, Wintle BA (2011) Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Divers Distrib. doi:10.1111/j.1472-4642.2011.00794.x

    Google Scholar 

  • Coma R, Serrano E, Linares C, Ribes M, Díaz D, Ballesteros E (2011) Sea urchins predation facilitates coral invasion in a marine reserve. PLoS One 6(7):e22017. doi:10.1371/journal.pone.0022017

    Article  PubMed  CAS  Google Scholar 

  • Creed JC, De Paula AF (2007) Substratum preference during recruitment of two invasive alien corals onto shallow-subtidal tropical rocky shores. Mar Ecol Prog Ser 330:101–111

    Article  Google Scholar 

  • Davies KF, Chesson P, Harrison S, Inouye BD, Melbourne BA, Rice KJ (2005) Spatial heterogeneity explains the scale dependence of the native–exotic diversity relationship. Ecology 86:1602–1610

    Article  Google Scholar 

  • Dayton PK (1971) Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389

    Article  Google Scholar 

  • Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496

    Article  PubMed  Google Scholar 

  • Dumont CP, Gaymer CF, Thiel M (2011) Predation contributes to invasion resistance of benthic communities against the non-indigenous tunicate Ciona intestinalis. Biol Invasions. doi:10.1007/s10530-011-0018-7

    Google Scholar 

  • Elton C (1958) The ecology of invasions by plants and animals. Methuen, London

    Google Scholar 

  • Fine M, Zibrowius H, Loya Y (2001) Oculina patagonica: a non lessepsian scleractinian coral invading the Mediterranean Sea. Mar Biol 138:1195–1203

    Article  Google Scholar 

  • Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17

    Article  PubMed  CAS  Google Scholar 

  • Gerasimou S, Perdicoulis A (2009) Urban renaissance on Athens southern coast: the case of Palaio Faliro. Int J Energy Environ 4(3):178–185

    Google Scholar 

  • Glasby TM, Connell SD, Holloway MG, Hewitt CL (2007) Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Mar Biol 151:887–895

    Article  Google Scholar 

  • Hanspach J, Kühn I, Pyšek P, Boos E, Klotz S (2008) Correlates of naturalization and occupancy of introduced ornamentals in Germany. Perspect Plant Ecol Syst 10:241–250

    Article  Google Scholar 

  • Hines JE (2006) PRESENCE2: software to estimate patch occupancy and related parameters. USGS, Patuxent Wildlife Research Center, Patuxent. http://www.mbr-pwrc.usgs.gov/software/presence.html. Accessed 12 Feb 2012

  • Ignacio BL, Julio LM, Junqueira AOR, Ferreira-Silva MAG (2010) Bioinvasion in a Brazilian Bay: filling gaps in the knowledge of southwestern Atlantic biota. PLoS One 5(9):e13065. doi:10.1371/journal.pone.0013065

    Article  PubMed  Google Scholar 

  • Issaris Y, Katsanevakis S, Salomidi M, Tsiamis K, Katsiaras N, Verriopoulos G (2012) Occupancy estimation of marine species: dealing with imperfect detectability. Mar Ecol Prog Ser 453:95–106

    Article  Google Scholar 

  • Katsanevakis S (2006) Modeling fish growth: model selection, multi-model inference and model selection uncertainty. Fish Res 81(2):229–235

    Article  Google Scholar 

  • Katsanevakis S, Zenetos A, Mačič V, Beqiraj S, Poursanidis D, Kashta L (2011) Invading the Adriatic: spatial patterns of marine alien species across the Ionian-Adriatic boundary. Aquat Biol 13:107–118

    Article  Google Scholar 

  • Klein J, Ruitton S, Verlaque M, Boudouresque CF (2005) Species introductions, diversity and disturbances in marine macrophyte assemblages of the northwestern Mediterranean Sea. Mar Ecol Prog Ser 290:79–88

    Article  Google Scholar 

  • Kontoyiannis H, Krestenitis I, Petihakis G, Tsirtsis G (2005) Coastal areas: circulation and hydrological features. In: Papathanassiou E, Zenetos A (eds) State of the Hellenic marine environment. HCMR, Athens, pp 95–103

    Google Scholar 

  • Kramarsky-Winter E, Fine M, Loya Y (1997) Coral polyp expulsion. Nature 387(6629):137

    Article  CAS  Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Article  PubMed  CAS  Google Scholar 

  • Loya Y (1978) Plotless and transect methods. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, Paris, pp 197–217

    Google Scholar 

  • MacKenzie DI, Bailey LL (2004) Assessing the fit of site occupancy models. J Agric Biol Environ Stat 9:300–318

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling. Academic Press, San Diego

    Google Scholar 

  • MEA (2005) Ecosystems and human well-being: biodiversity synthesis. Millennium Ecosystem Assessment, Washington, DC

    Google Scholar 

  • Moilanen A (2002) Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 96:515–530

    Article  Google Scholar 

  • Nadon MO, Stirling G (2006) Field and simulation analyses of visual methods for sampling coral cover. Coral Reefs 25:177–185

    Article  Google Scholar 

  • Por FD (2009) Tethys returns to the Mediterranean: success and limits of tropical re-colonization. BioRisk 3:5–19. doi:10.3897/biorisk.3.30

    Article  Google Scholar 

  • Salomidi M, Bellou N, Pancucci-Papadopoulou MA, Zibrowius H (2006) First observation of an invasive scleractinian coral in Greek waters. In: 41st EMBS, Cork, 4–8 September 2006. http://www.mendeley.com/research/first-observation-invasive-scleractinian-coral-greek-waters/#. Accessed 1 Feb 2012

  • Sammarco PW, Porter SA, Cairns SD (2010) A new coral species introduced into the Atlantic Ocean—Tubastraea micranthus (Ehrenberg, 1834) (Cnidaria, Anthozoa, Scleractinia): an invasive threat? Aquat Invasions 5(2):131–140

    Article  Google Scholar 

  • Sartoretto S, Harmelin J-G, Bachet F, Bejaoui N, Zibrowius H (2008) The alien coral Oculina patagonica De Angelis 1908 (Cnidaria; Scleractinia) in Algeria and Tunisia. Aquat Invasions 3(2):173–180

    Article  Google Scholar 

  • Segal R (2006) Bleaching of the coral Oculina patagonica: ecological, physiological and genetic aspects of different populations along the coast of Israel. MS dissertation, Tel-Aviv University

  • Shenkar N, Loya Y (2009) Non-indigenous ascidians along the Mediterranean coast of Israel. Mar Biodivers Rec 2:1–7

    Article  Google Scholar 

  • Shenkar N, Fine M, Loya Y (2005) Size matters: bleaching dynamics of the coral Oculina patagonica. Mar Ecol Prog Ser 294:181–188

    Article  Google Scholar 

  • Simberloff D (1997) The biology of invasions. In: Simberloff D, Schmitz DC, Brown TC (eds) Strangers in paradise: impact and management of nonindigenous species in Florida. Island Press, Washington, pp 3–19

    Google Scholar 

  • Simboura N, Panayotidis P, Papathanassiou E (2005) A synthesis of the biological quality elements for the implementation of the European water framework directive in the Mediterranean ecoregion: the case of Saronikos Gulf. Ecol Indic 5:253–266

    Article  CAS  Google Scholar 

  • Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286:1577–1579

    Article  PubMed  CAS  Google Scholar 

  • Stachowicz JJ, Fried H, Whitlatch RB, Osman RW (2002) Biodiversity, invasion resistance and marine ecosystem function: reconciling pattern and process. Ecology 83:2575–2590

    Article  Google Scholar 

  • Tsiamis K, Montesanto B, Panayotidis P, Katsaros C & Verlaque M (2010) Updated records and range expansion of alien marine macrophytes in Greece. Mediterr Mar Sci 11(1):61–79

    Google Scholar 

  • Tsiamis K, Panayotidis P, Salomidi M, Pavlidou A, Kleinteich J, Balanika K, Küpper FC (2013). Macroalgal community response to re-oligotrophication in Saronikos Gulf. Mar Ecol Prog Ser 472:73–85

    Google Scholar 

  • Tyrell MC, Byers JE (2007) Do artificial substrates favor nonindigenous fouling species over natives? J Exp Mar Biol Ecol 342(1):54–60

    Article  Google Scholar 

  • Tzannatos E (2009) Ship emissions and their externalities for the port of Piraeus—Greece. Atmos Environ 44(3):400–407

    Article  Google Scholar 

  • Zenetos A, Katsanevakis S, Poursanidis D, Crocetta F, Damalas D, Apostolopoulos G, Gravili C, Vardala-Theodorou E, Malaquias M (2011) Marine alien species in Greek Seas: additions and amendments by 2010. Mediterr Mar Sci 12(1):95–120

    Google Scholar 

  • Zenetos A, Ates S, Azzurro E, Ballesteros E, Bianchi CN et al (2012) Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part II. Trends in introduction and pathway/vector. Mediterr Mar Sci 13(2):328–352

    Google Scholar 

  • Zentelis P, Labropoulos T (2004) Impact of the Athens 2004 Olympic Games on real estate in Greece. IAAO 1(3):5–20

    Google Scholar 

  • Zhang Z, Xie Y, Wu Y (2006) Human disturbance, climate and biodiversity determine biological invasion at a regional scale. Integr Zool 1:130–138

    Article  PubMed  CAS  Google Scholar 

  • Zibrowius H (1974) Oculina patagonica, Scléractiniaire hermatypique introduit en Méditerranée. Helgoländ Wiss Meer 26(2):153–173

    Article  Google Scholar 

  • Zibrowius H, Ramos AA (1983) Oculina patagonica, scléractinaire exotique en Méditerranée–nouvelles observations dans le sud-est de l’Espagne. Rapports et procès-verbaux des réunions, Commission internationale pour l’Exploration scientifique de la mer Méditerranée 28(3):297–301

    Google Scholar 

Download references

Acknowledgments

This work has been partly funded by the Athens Water Supply and Sewerage Company (EYDAP SA). The authors would like to thank the two anonymous reviewers for providing constructive comments and corrections that substantially helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Salomidi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 327 kb)

Supplementary material 2 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salomidi, M., Katsanevakis, S., Issaris, Y. et al. Anthropogenic disturbance of coastal habitats promotes the spread of the introduced scleractinian coral Oculina patagonica in the Mediterranean Sea. Biol Invasions 15, 1961–1971 (2013). https://doi.org/10.1007/s10530-013-0424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0424-0

Keywords

Navigation