Skip to main content
Log in

Biocontrol in Australia: Can a carp herpesvirus (CyHV-3) deliver safe and effective ecological restoration?

  • Perspectives and paradigms
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The Australian Government is considering Cyprinid herpesvirus 3 (CyHV-3) for biocontrol of invasive common carp (Cyprinus carpio L.). We review the evidence-base for its potential ecological risks, benefits and effectiveness. Lower carp abundance may boost native fish biomass and improve water clarity, but there is little evidence available to suggest that the virus, alone or used in combination with other methods, can deliver effective or safe biocontrol. Further, the virus may already be present in Australia. Overseas, the virus has caused sporadic and localized mortalities of carp in lakes and rivers, but has generally had no long-term measurable effect on wild carp or native fish populations. The temperature range of disease (18–28 °C), unknown co-factors causing outbreaks, and predictable re-colonization and recruitment boom of immune and virus-resistant carp, following a biocontrol release, remain formidable and unmitigated barriers to success. CyHV-3 infection trials on Australian biota have unexplained high mortality rates of recreationally-important and threatened fishes, and the role of asymptomatic carriers remains uncertain. Finally, Australia has national and international obligations to ensure that there are no perverse outcomes from biocontrol actions. Despite political pressure, there is no environmental justification to rush the release of this virus. To achieve the Government goals of restoring native biodiversity we advocate that key uncertainties, risks and efficacy barriers first need to be addressed. It is only then that viral biocontrol could be considered a viable tool to complement broader ecological restoration strategies for Australia’s waterways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abram QH, Dixon B, Katzenback BA (2017) Impacts of low temperature on the teleost immune system. Biology 6(4):39

    Article  CAS  PubMed Central  Google Scholar 

  • Bajer PG, Chizinski CJ, Sorensen PW (2011) Using the Judas technique to locate and remove wintertime aggregations of invasive common carp. Fish Manag Ecol 18(6):497–505

    Article  Google Scholar 

  • Bajer PG, Chizinski CJ, Silbernagel JJ, Sorensen PW (2012) Variation in native micro-predator abundance explains recruitment of a motile invasive fish, the common carp, in a naturally unstable environment. Biol Invasions 14:1919–1929

    Article  Google Scholar 

  • Baker CM, Gordon A, Bode M (2017) Ensemble ecosystem modelling for predicting ecosystem response to predator reintroduction. Conserv Biol 31(2):376–384

    Article  PubMed  Google Scholar 

  • Balon EK (1995) Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture 129(1–4):3–48

    Article  Google Scholar 

  • Beaghton A, Beaghton PJ, Burt A (2016) Gene drive through a landscape: reaction-diffusion models of population suppression and elimination by a sex ratio distorter. Theor Pop Biol 108:51–69

    Article  Google Scholar 

  • Bergmann SM, Sadowski J, Kielpinski M, Bartlomiejczyk M, Fichtner D, Riebe R, Lenk M, Kempter J (2010) Susceptibility of koi x crucian carp and koi x goldfish hybrids to koi herpesvirus (KHV) and the development of KHV disease (KHVD). J Fish Dis 33:267–272

    Article  CAS  PubMed  Google Scholar 

  • Boutier M, Ronsmans M, Rakus K, Jazowiecka-Rakus J, Vancsok C, Morvan L, Peñaranda MMD, Stone DM, Way K, van Beurden SJ, Davison AJ, Vanderplasschen A (2015) Chapter three-cyprinid herpesvirus 3: an archetype of fish alloherpesviruses. Adv Virus Res 93:161–256

    Article  CAS  PubMed  Google Scholar 

  • Brown P, Gilligan D (2014) Optimising an integrated pest-management strategy for a spatially structured population of common carp (Cyprinus carpio) using meta-population modelling. Mar Freshw Res 65:538–550

    Article  Google Scholar 

  • Dodd AP (1936) The control and eradication of prickly-pear in Australia. Bull Entomol Res 27(3):503–517

    Article  Google Scholar 

  • Doherty TS, Ritchie EG (2017) Stop jumping the gun: a call for evidence-based invasive predator management. Conserv Lett 10(1):15–22

    Article  Google Scholar 

  • Esvelt KM, Gemmell NJ (2017) Conservation demands safe gene drive. PLoS Biol 15(11):e2003850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014) Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3:e03401. https://doi.org/10.7554/elife.03401

    Article  PubMed  PubMed Central  Google Scholar 

  • Evelsizer DD, Clark RG, Bollinger TK (2010) Relationships between local carcass density and risk of mortality in molting mallards during avian botulism outbreaks. J Wild Dis 46:507–513

    Article  Google Scholar 

  • Fabian M, Baumer A, Steinhagen D (2013) Do wild fish species contribute to the transmission of koi herpesvirus to carp in hatchery ponds? J Fish Dis 36:505–514

    Article  CAS  PubMed  Google Scholar 

  • Fabian M, Baumer A, Adamek M, Steinhagen D (2016) Transmission of Cyprinid herpesvirus 3 by wild fish species—results from infection experiments. J Fish Dis 39:625–628

    Article  CAS  PubMed  Google Scholar 

  • Fletcher AR, Morison AK, Hume DJ (1985) Effects of carp, Cyprinus carpio L., on communities of aquatic vegetation and turbidity of waterbodies in the lower Goulburn River basin. Mar Freshw Res 36(3):311–327

    Article  Google Scholar 

  • Gaede L, Steinbrück J, Bergmann SM, Jäger K, Gräfe H, Schoon HA, Speck S, Truyen U (2017) Koi herpesvirus infection in experimentally infected common carp Cyprinus carpio (Linnaeus, 1758) and three potential carrier fish species Carassius carassius (Linnaeus, 1758); Rutilus rutilus (Linnaeus, 1758); and Tinca tinca (Linnaeus, 1758) by quantitative real-time PCR and in situ hybridization. J Appl Ichthy 33:776–784

    Article  CAS  Google Scholar 

  • Gao Y, Suárez NM, Wilkie GS, Dong C, Bergmann S, Lee PA, Davison AJ, Vanderplasschen A, Boutier M (2018) Genomic and biologic comparisons of cyprinid herpesvirus 3 strains. Vet Res 49:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson-Reinemer DK, Chick JH, VanMiddlesworth TD, VanMiddlesworth M, Casper AF (2017) Widespread and enduring demographic collapse of invasive common carp (Cyprinus carpio) in the Upper Mississippi River System. Biol Invasions 19:1905–1916

    Article  Google Scholar 

  • Gilad O, Yun S, Zagmutt-Vergara FJ, Leutenegger CM, Bercovier H, Hedrick RP (2004) Concentrations of a Koi herpesvirus (KHV) in tissues of experimentally-infected Cyprinus carpio koi as assessed by real-time TaqMan PCR. Dis Aqua Org 60:179–187

    Article  CAS  Google Scholar 

  • Haenen OLM, Way K, Bergmann SM, Ariel E (2004) The emergence of koi herpesvirus and its significance to European aquaculture. Bull Euro Assoc Fish Path 24:293–307

    Google Scholar 

  • Harris JH, Gehrke PC (1997) Fish and rivers in stress—the NSW rivers survey. NSW Fisheries Office of Conservation & the Cooperative Research Centre for Freshwater Ecology, Cronulla & Canberra

  • Haynes GD, Gilligan DM, Grewe P, Nicholas FW (2009) Population genetics and management units of invasive common carp Cyprinus carpio in the Murray-Darling Basin, Australia. J Fish Biol 75(2):295–320

    Article  CAS  PubMed  Google Scholar 

  • Haynes GD, Gongora J, Gilligan DM, Grewe P, Moran C, Nicholas FW (2012) Cryptic hybridization and introgression between invasive Cyprinid species Cyprinus carpio and C arassius auratus in Australia: implications for invasive species management. Anim Conserv 15(1):83–94

    Article  Google Scholar 

  • Hedrick RP, Waltzek TB, McDowell TS (2006) Susceptibility of koi carp, common carp, goldfish, and goldfish × common carp hybrids to cyprinid herpesvirus-2 and herpesvirus-3. J Aquat Anim Health 18:26–34

    Article  Google Scholar 

  • Hinchliffe C, Atwood T, Ollivier Q, Hammill E (2017) Presence of invasive Gambusia alters ecological communities and the functions they perform in lentic ecosystems. Mar Freshw Res 68(10):1867–1876

    Article  Google Scholar 

  • Hobbs RJ, Hallett LM, Ehrlich PR, Mooney HA (2011) Intervention ecology: applying ecological science in the twenty-first century. Bioscience 61(6):442–450

    Article  Google Scholar 

  • Ilouze M, Davidovich M, Diamant A, Kotler M, Dishon A (2010) The outbreak of carp disease caused by CyHV-3 as a model for new emerging viral diseases in aquaculture: a review. Ecol Res 26:885–892

    Article  Google Scholar 

  • Ito T, Kurita J, Yuasa K (2014) Differences in the susceptibility of Japanese indigenous and domesticated Eurasian common carp (Cyprinus carpio), identified by mitochondrial DNA typing, to cyprinid herpesvirus 3 (CyHV-3). Vet Microbiol 171:31–40

    Article  CAS  PubMed  Google Scholar 

  • Kempter J, Kielpinski M, Panicz R, Sadowski J, Myslowski B, Bergmann SM (2012) Horizontal transmission of koi herpes virus (KHV) from potential vector species to common carp. Bull Euro Assoc Fish Path 32:212–219

    Google Scholar 

  • Kerr JL, Baldwin DS, Whitworth KL (2013) Options for managing hypoxic blackwater events in river systems: a review. J Enviro Man 114:139–147

    Article  CAS  Google Scholar 

  • King AJ, Robertson AI, Healey MR (1997) Experimental manipulations of the biomass of introduced carp (Cyprinus carpio) in billabongs. I. Impacts on water-column properties. Mar Freshw Res 48(5):435–443

    Article  CAS  Google Scholar 

  • King AJ, Humphries P, Lake PS (2003) Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. Can J Fish Aqu Sci 60(7):773–786

    Article  Google Scholar 

  • King AJ, Tonkin Z, Lieshcke J (2012) Short-term effects of a prolonged blackwater event on aquatic fauna in the Murray River, Australia: considerations for future events. Mar Freshw Res 63(7):576–586

    Article  Google Scholar 

  • Koehn JD (2004) Carp (Cyprinus carpio) as a powerful invader in Australian waterways. Fresh Biol 49(7):882–894

    Article  Google Scholar 

  • Koehn JD, Lintermans M, Copeland C (2014) Laying the foundations for fish recovery: the first 10 years of the Native Fish Strategy for the Murray-Darling Basin, Australia. Ecol Man Rest 15:3–12

    Article  Google Scholar 

  • Koehn JD, Todd CR, Zampatti BP, Stuart IG, Conallin A, Thwaites L, Ye Q (2018) Using a population model to inform the management of river flows and invasive carp (Cyprinus carpio). Environ Man 61(3):432–442

    Google Scholar 

  • Kopf RK, Nimmo DG, Humphries P, Baumgartner LJ, Bode M, Bond NR, Byrom AE, Cucherousset J, Keller RP, King AJ, McGinness HM, Moyle PB, Olden J (2017) Confronting the risks of large-scale invasive species control. Nat Ecol Evol 1:0172

    Article  Google Scholar 

  • Kopf RK, Humphries P, Bond NR, Sims NC, Watts RJ, Thompson RM, Hladyz S, Koehn JD, King AJ, McCasker N, McDonald S (2018) Macroecology of fish community biomass-size structure: effects of invasive species and river regulation. Can J Fish Aqu Sci. https://doi.org/10.1139/cjfas-2017-0544

    Article  Google Scholar 

  • Kulhanek SA, Leung B, Ricciardi A (2011) Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol Appl 21(1):203–213

    Article  PubMed  Google Scholar 

  • Li Y, Zhang Q, Zhang L, Tan Z, Yao J (2017) Investigation of water temperature variations and sensitivities in a large floodplain lake system (Poyang Lake, China) using a hydrodynamic model. Remote Sens 9(12):1231

    Article  Google Scholar 

  • Lighten J, van Oosterhout C (2017) Biocontrol of common carp in Australia poses risks to biosecurity. Nat Ecol Evol 1(3):0087

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group Auckland

  • Lugg A, Copeland C (2014) Review of cold water pollution in the Murray-Darling Basin and the impacts on fish communities. Ecol Man Rest 15(1):71–79

    Article  Google Scholar 

  • Macdonald JI, Crook DA (2014) Nursery sources and cohort strength of young-of-the-year common carp (Cyprinus carpio) under differing flow regimes in a regulated floodplain river. Ecol Fresh Fish 23(2):269–282

    Article  Google Scholar 

  • Marshall J, Davison A, Kopf RK, Boutier M, Stevenson P, Vanderplasschen A (2018) Biocontrol of invasive carp: risks abound. Science 359(6378):877

    CAS  PubMed  Google Scholar 

  • McColl KA, Sunarto A, Holmes EC (2016a) Cyprinid herpesvirus 3 and its evolutionary future as a biological control agent for carp in Australia. Virol J 13(1):206

    Article  PubMed  PubMed Central  Google Scholar 

  • McColl KA, Sunarto A, Slater J, Bell K, Asmus M, Fulton W, Hall K, Brown P, Gilligan D, Hoad J (2016b) Cyprinid herpesvirus 3 as a potential biological control agent for carp (Cyprinus carpio) in Australia: susceptibility of non-target species. J Fish Dis 40(9):1141–1153

    Article  CAS  PubMed  Google Scholar 

  • McColl KA, Sheppard AW, Barwick M (2017) Safe and effective biocontrol of common carp. Nat Ecol Evol 1:0134

    Article  Google Scholar 

  • McDonald T, Jonson J, Dixon KW (2016) National standards for the practice of ecological restoration in Australia. Rest Ecol 24:S4–S32

    Article  Google Scholar 

  • McDonald-Madden E, Probert WJM, Hauser CE, Runge MC, Possingham HP, Jones ME, Moore JL, Rout TM, Vesk PA, Wintle BA (2010) Active adaptive conservation of threatened species in the face of uncertainty. Ecol Appl 20:1476–1489

    Article  PubMed  Google Scholar 

  • Minamoto T, Honjo MN, Yamanaka H, Uchii K, Kawabata ZI (2012) Nationwide Cyprinid herpesvirus 3 contamination in natural rivers of Japan. Res Vet Sci 93(1):508–514

    Article  PubMed  Google Scholar 

  • National Academies Press (2016) Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values. National Academies Press, Washington

    Google Scholar 

  • NCCP (2017) The national carp control plan strategic research and technology plan 2017–2019. Fisheries Research and Development Corporation, Australia

    Google Scholar 

  • OIE (2012) Chapter 2.3.6. Koi herpesvirus disease. In: Manual of diagnostic tests for aquatic animals 2012, pp 328–344

  • Palmer MA, Bernhardt ES, Allan JD, Lake PS, Alexander G, Brooks S, Carr J, Clayton S, Dahm CN, Shah JF, Galat DL (2005) Standards for ecologically successful river restoration. J Appl Ecol 42(2):208–217

    Article  Google Scholar 

  • Paton A, McGinness HM (2018) Food-web effects of sudden changes in fish abundance and mortality: how do fish-eaters and other water-dependent fauna respond?. CSIRO, Canberra

    Google Scholar 

  • Pedler RD, Brandle R, Read JL, Southgate R, Bird P, Moseby KE (2016) Rabbit biocontrol and landscape-scale recovery of threatened desert mammals. Conserv Biol 30(4):774–782

    Article  PubMed  Google Scholar 

  • Piackova V, Flajshans M, Pokorova D, Reschova S, Gela D, Cizek A, Vesely T (2013) Sensitivity of common carp, Cyprinus carpio L., strains and crossbreeds reared in the Czech Republic to infection by cyprinid herpesvirus 3 (CyHV-3; KHV). J Fish Dis 36:75–80

    Article  CAS  PubMed  Google Scholar 

  • Pittock J, Finlayson CM (2011) Australia’s Murray Darling Basin: freshwater ecosystem conservation options in an era of climate change. Mar Freshw Res 62:232–243

    Article  CAS  Google Scholar 

  • Pyke GH (2008) Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species. Ann Rev Ecol Evol Syst 39:171–191

    Article  Google Scholar 

  • Rakus KL, Wiegertjes GF, Adamek M, Siwicki AK, Lepa A, Irnazarow I (2009) Resistance of common carp (Cyprinus carpio L.) to Cyprinid herpesvirus-3 is influenced by major histocompatibility (MH) class II B gene polymorphism. Fish Shell Immunol 26:737–743

    Article  CAS  Google Scholar 

  • Rakus KL, Ronsmans M, Forlenza M, Boutier M, Piazzon MC, Jazowiecka-Rakus J, Gatherer D, Athanasiadis A, Farnir F, Davison AJ, Boudinot P (2017) Conserved fever pathways across vertebrates: a herpesvirus expressed decoy TNF-α receptor delays behavioral fever in fish. Cell Host Microbe 21:244–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Raymond B, McInnes J, Dambacher JM, Way S, Bergstrom DM (2011) Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J Appl Ecol 48:181–191

    Article  Google Scholar 

  • Robertson AI, Healey MR, King AJ (1997) Experimental manipulations of the biomass of introduced carp (Cyprinus carpio) in billabongs. II. Impacts on benthic properties and processes. Mar Fresh Res 48(5):445–454

    Article  CAS  Google Scholar 

  • Ronen A, Perelberg A, Abramowitz J, Hutoran M, Tinman S, Bejerano I, Steinitz M, Kotler M (2003) Efficient vaccine against the virus causing a lethal disease in cultured Cyprinus carpio. Vaccine 21:4677–4684

    Article  CAS  PubMed  Google Scholar 

  • Schill DJ, Meyer KA, Hansen MJ (2017) Simulated effects of YY-male stocking and manual suppression for eradicating nonnative brook trout populations. N Am J Fish Manag 37(5):1054–1066

    Article  Google Scholar 

  • Shearer KD, Mulley JC (1978) The introduction and distribution of the carp, Cyprinus carpio Linnaeus, in Australia. Mar Fresh Res 29:551–563

    Article  Google Scholar 

  • Shine R (2010) The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q Rev Biol 85(3):253–291

    Article  PubMed  Google Scholar 

  • Simberloff D, Stiling P (1996) How risky is biological control. Ecology 77:1965–1974

    Article  Google Scholar 

  • Simberloff D, Martin J, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Small K, Kopf RK, Watts RJ, Howitt J (2014) Hypoxia, blackwater and fish kills: experimental lethal oxygen thresholds in juvenile predatory lowland river fishes. PLoS ONE 9(4):e94524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart IG, Jones M (2006) Large, regulated forest floodplain is an ideal recruitment zone for non-native common carp (Cyprinus carpio L.). Mar Freshw Res 57(3):333–347

    Article  Google Scholar 

  • Sunarto A, McColl KA, Crane MS, Schat KA, Slobedman B, Barnes AC, Walker PJ (2014) Characteristics of cyprinid herpesvirus 3 in different phases of infection: implications for disease transmission and control. Virus Res 188:45–53

    Article  CAS  PubMed  Google Scholar 

  • Teem JL, Gutierrez JB, Parshad RD (2014) A comparison of the Trojan Y Chromosome and daughterless carp eradication strategies. Biol Invasions 16(6):1217–1230

    Article  Google Scholar 

  • Thresher RE et al (2012) Daughterless technology: a recipe for eradicating carp in Australia. In: Hall HG (ed) Forum abstracts: carp management in Australia. Invasive Animals CRC, Canberra

    Google Scholar 

  • Thresher RE, van de Kamp J, Campbell G, Canning M, Grewe P, Barney M (2014) Sex-ratio-biasing constructs for the control of invasive lower vertebrates. Nat Biotechnol 32:424–427

    Article  CAS  PubMed  Google Scholar 

  • Thresher RE, Allman J, Stremick-Thompson L (2018) Impacts of an invasive virus (CyHV-3) on established invasive populations of common carp (Cyprinus carpio) in North America. Biol Invasions 20:1703–1718

    Article  Google Scholar 

  • Turvey N (2013) Cane toads: a tale of sugar, politics and flawed science. Sydney University Press, Sydney

    Google Scholar 

  • Uchii K, Okuda N, Minamoto T, Kawabata Z (2013) An emerging infectious pathogen endangers an ancient lineage of common carp by acting synergistically with conspecific exotic strains. Anim Conserv 16:324–330

    Article  Google Scholar 

  • Uchii K, Minamoto T, Honjo MN, Kawabata Z (2014) Seasonal reactivation enables Cyprinid herpesvirus 3 to persist in a wild host population. FEMS Micrbiol Ecol 87:536–542

    Article  CAS  Google Scholar 

  • Vilizzi L, Tarkan A, Copp G (2015) Experimental evidence from causal criteria analysis for the effects of common carp Cyprinus carpio on freshwater ecosystems: a global perspective. Rev Fish Sci Aqua 23(3):253–290

    Article  Google Scholar 

  • Webber BL, Raghu S, Edwards OR (2015) Opinion: is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proc Nat Acad Sci 112:10565–10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber MJ, Brown ML (2009) Effects of common carp on aquatic ecosystems 80 years after carp as a dominant: ecological insights for fisheries management. Rev Fish Sci 17(4):524–537

    Article  Google Scholar 

  • WHA (2013) Botulism in Australian wild birds factsheet. Wildlife Health Australia

  • Whitworth KL, Baldwin DS (2016) Improving our capacity to manage hypoxic blackwater events in lowland rivers: the Blackwater Risk Assessment Tool. Ecol Model 320:292–298

    Article  CAS  Google Scholar 

  • Whitworth KL, Baldwin DS, Kerr JL (2012) Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray-Darling Basin, Australia). J Hydrol 450–451:190–198

    Article  CAS  Google Scholar 

  • Zambrano L, Hinojosa D (1999) Direct and indirect effects of carp (Cyprinus carpio L.) on macrophyte and benthic communities in experimental shallow ponds in central Mexico. Hydrobiologia 408:131–138

    Article  Google Scholar 

  • Zambrano L, Scheffer M, Martínez-Ramos M (2001) Catastrophic response of lakes to benthivorous fish introduction. Oikos 94(2):344–350

    Article  Google Scholar 

  • Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16(8):454–459

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Matt Barwick formerly of Australia’s National Carp Control Plan (NCCP) for comments on a previous version of Table 1. Jon Marshall acknowledges his membership on the Science Advisory Group of the NCCP, representing the Queensland Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Kopf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopf, R.K., Boutier, M., Finlayson, C.M. et al. Biocontrol in Australia: Can a carp herpesvirus (CyHV-3) deliver safe and effective ecological restoration?. Biol Invasions 21, 1857–1870 (2019). https://doi.org/10.1007/s10530-019-01967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-01967-1

Keywords

Navigation