Skip to main content
Log in

Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Cometabolic degradation of TCE by toluene-degrading bacteria has the potential for being a cost-effective bioremediation technology. However, the application of toluene may pose environmental problems. In this study, several plant essential oils and their components were examined as alternative inducer for TCE cometabolic degradation in a toluene-degrading bacterium, Rhodococcus sp. L4. Using the initial TCE concentration of 80 μM, lemon and lemongrass oil-grown cells were capable of 20 ± 6% and 27 ± 8% TCE degradation, which were lower than that of toluene-grown cells (57 ± 5%). The ability of TCE degradation increased to 36 ± 6% when the bacterium was induced with cumin oil. The induction of TCE-degrading enzymes was suggested to be due to the presence of citral, cumin aldehyde, cumene, and limonene in these essential oils. In particular, the efficiency of cumin aldehyde and cumene as inducers for TCE cometabolic degradation was similar to toluene. TCE transformation capacities (T c) for these induced cells were between 9.4 and 15.1 μg of TCE mg cells−1, which were similar to the known toluene, phenol, propane or ammonia degraders. Since these plant essential oils are abundant and considered non-toxic to humans, they may be applied to stimulate TCE degradation in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Cohen L, McCarty PL (1991) Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol 57:1031–1037

    PubMed  CAS  Google Scholar 

  • Alvarez-Cohen L, Speitel GE (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105–126. doi:10.1023/A:1012075322466

    Article  PubMed  CAS  Google Scholar 

  • Arcangeli JP, Arvin E (1997) Modeling of the cometabolic biodegradation of trichloroethylene by toluene-oxidizing bacteria in a biofilm system. Environ Sci Technol 31:3044–3052. doi:10.1021/es9609112

    Article  CAS  Google Scholar 

  • Arp DJ, Yeager CM, Hyman MR (2001) Molecular and cellular fundamentals of aerobic co-metabolism of trichloroethylene. Biodegradation 12:81–103. doi:10.1023/A:1012089908518

    Article  PubMed  CAS  Google Scholar 

  • Beis SH, Azcan N, Ozek T, Kara M, Baser KHC (2000) Production of essential oil from cumin seeds. Chem Nat Compd 36:265–268. doi:10.1007/BF02238331

    Article  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. doi:10.1016/j.ijfoodmicro.2004.03.022

    Article  PubMed  CAS  Google Scholar 

  • Chang HL, Alvarez-Cohen L (1995) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol Bioeng 45:440–449. doi:10.1002/bit.260450509

    Article  PubMed  CAS  Google Scholar 

  • Chang HL, Alvarez-Cohen L (1996) The biodegradation of individual and multiple chlorinated aliphatics by mixed and pure methane oxidizing cultures. Appl Environ Microbiol 62:3371–3377

    PubMed  CAS  Google Scholar 

  • Chen W-M, Chang J-S, Wu C-H, Chang S-C (2004) Characterization of phenol and trichloroethylene degradation by the rhizobium Ralstonia taiwanensis. Res Microbiol 155:672–680. doi:10.1016/j.resmic.2004.05.004

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-M, Lin T-F, Huang C, Lin J-C, Hsieh F-M (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J Hazard Mater 148:660–670. doi:10.1016/j.jhazmat.2007.03.030

    Article  PubMed  CAS  Google Scholar 

  • Chu K-H, Alvarez-Cohen L (1998) Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria. Appl Environ Microbiol 64:3451–3457

    PubMed  CAS  Google Scholar 

  • Crowley DE, Luepromchai E, Singer AC (2001) Metabolism of xenobiotics in the rhizosphere. In: Hall JC, Hoagland RE, Zablotowicz RB (eds) Pesticide biotransformation in plants and microorganisms: similarities and divergences. American Chemical Society, Washington, pp 333–352

    Google Scholar 

  • Dabrock B, Riedel J, Bertram J, Gottschalk G (1992) Isopropylbenzene (cumene) a new substrate for the isolation of trichloroethene-degrading bacteria. Arch Microbiol 158:9–13. doi:10.1007/BF00249058

    Article  PubMed  CAS  Google Scholar 

  • Dabrock B, Kebeler M, Averhoff B, Gottschaalk G (1994) Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethylene catabolism. Appl Environ Microbiol 60:853–860

    PubMed  CAS  Google Scholar 

  • Dzantor EK, Woolston JE (2001) Enhancing dissipation of Aroclor 1248 (PCB) using substrate amendment in rhizosphere soil. J Environ Sci Health 36:1861–1871. doi:10.1081/ESE-100107434

    Article  CAS  Google Scholar 

  • El-Sawi SA, Mohamed MA (2002) Cumin herb as a new source of essential oil and its response to foliar spray with some micro-elements. Food Chem 77:75–80. doi:10.1016/S0308-8146(01)00326-0

    Article  CAS  Google Scholar 

  • Ely RL, Williamson KJ, Arp DJ (1997) Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics substrate interactions, toxicity effects, and bacterial response. Biotechnol Bioeng 54:520–534. doi:10.1002/(SICI)1097-0290(19970620)54:6<520::AID-BIT3>3.0.CO;2-L

    Google Scholar 

  • Fitch MW, Speitel GE Jr, Georgior G (1996) Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b PP358. Appl Environ Microbiol 26:1124–1128

    Google Scholar 

  • Focht DD (1994) Microbiological procedures for biodegradation research. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis, part 2 microbiological and biochemical properties. Soil Science Society of America, Madison

    Google Scholar 

  • Folsom BR, Chapman PJ, Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetic and interactions between substrates. Appl Environ Microbiol 56:1279–1285

    PubMed  CAS  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001) Diversity in kinetics of trichloroethylene-degradation activities exhibited by phenol-degrading bacteria. Appl Microbiol Biotechnol 55:248–253. doi:10.1007/s002530000500

    Article  PubMed  CAS  Google Scholar 

  • Gilbert ES, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. Strain BIB. Appl Environ Microbiol 63:1933–1938

    PubMed  CAS  Google Scholar 

  • Heald S, Jenkins RO (1994) Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl Environ Microbiol 60:4634–4637

    PubMed  CAS  Google Scholar 

  • Hernandez BS, Koh SC, Chial M, Focht DD (1997) Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8:153–158. doi:10.1023/A:1008255218432

    Article  CAS  Google Scholar 

  • Hopkins GD, McCarty PL (1995) Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as primary substrates. Environ Sci Technol 29:1628–1637. doi:10.1021/es00006a029

    Article  CAS  Google Scholar 

  • Jalali-Heravi M, Zekavat B, Sereshti H (2007) Use of gas chromatography-mass spectrometry combined with resolution methods to characterize the essential oil components of Iranian cumin and caraway. J Chromatogr A 1143:215–226. doi:10.1016/j.chroma.2007.01.042

    Article  PubMed  CAS  Google Scholar 

  • Kelly CJ, Bienkowski PR, Sayler PS (2000) Kinetic analysis of a tod-lux bacterial reporter for toluene degradation and trichloroethylene cometabolism. Biotechnol Bioeng 69:256–265. doi:10.1002/1097-0290(20000805)69:3<256::AID-BIT3>3.0.CO;2-2

    Google Scholar 

  • Kim B-H, Oh E-T, So J-S, Ahn Y, Koh S-C (2003) Plant terpene-induced expression of multiple aromatic ring hydroxylation oxygenase genes in Rhodococcus sp. Strain T104. J Microbiol 41:349–352

    CAS  Google Scholar 

  • Koh CS, Park IY, Koo MY, So SJ (2000) Plant terpenes and lignin as natural cosubstrate in biodegradation of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). Biotechnol Bioprocess Eng 5:164–168. doi:10.1007/BF02936588

    Article  CAS  Google Scholar 

  • Kuo MCT, Liang KF, Han YL, Fan KC (2004) Pilot studies for in-situ aerobic cometabolism of trichloroethylene using toluene-vapour as the primary substrate. Water Res 38:4125–4134. doi:10.1016/j.watres.2003.09.026

    Article  CAS  Google Scholar 

  • Landa AS, Sipkema EM, Weijma J, Beenackers AACM, Dolfing J, Janssen DB (1994) Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl Environ Microbiol 60:3368–3374

    PubMed  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290. doi:10.1016/j.copbio.2005.04.007

    Article  PubMed  CAS  Google Scholar 

  • Lee EY (2003) Continuous treatment of gas-phase trichloroethylene by Burkholderia cepacia G4 in a two-stage continuous stirred tank reactor/trickling biofilter system. J Biosci Bioeng 96:572–574. doi:10.1016/S1389-1723(04)70151-6

    Article  PubMed  CAS  Google Scholar 

  • Luu PP, Yung CW, Sun AK, Wood TK (1995) Monitoring trichloroethylene mineralization by Pseudomonas cepacia G4 PR1. Appl Microbiol Biotechnol 44:259–264. doi:10.1007/BF00164512

    Article  CAS  Google Scholar 

  • Moran BN, Hickey WJ (1997) Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms. Appl Environ Microbiol 63:3866–3871

    PubMed  CAS  Google Scholar 

  • Morono Y, Unno H, Tanji Y, Hori K (2004) Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1. Appl Environ Microbiol 70:2830–2835. doi:10.1128/AEM.70.5.2830-2835.2004

    Article  PubMed  CAS  Google Scholar 

  • Morono Y, Unno H, Hori K (2006) Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene-degrading bacteria. Biochem Eng J 31:173–179. doi:10.1016/j.bej.2006.07.003

    Article  CAS  Google Scholar 

  • Nelson MJK, Montgomery SO, Mahaffey WR, Pritchard PH (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Microbiol 53:949–954

    PubMed  CAS  Google Scholar 

  • Ohlen K, Chang YK, Hegemann W, Yin C-R, Lee S-T (2005) Enhanced degradation of chlorinated ethylenes in groundwater from a paint contaminated site by two-stage fluidized-bed reactor. Chemosphere 58:373–377. doi:10.1016/j.chemosphere.2004.08.060

    Article  PubMed  CAS  Google Scholar 

  • Oldenhuis R, Oedzes JY, van der Waarde JJ, Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol 57:7–14

    PubMed  CAS  Google Scholar 

  • Pflugmacher U, Averhoff B, Gottschalk G (1996) Cloning, sequencing, and expression of isopropylbenzene degradation genes from Pseudomonas sp. Strain JR1: identification of isopropylbenzene dioxygenase that mediates trichloroethene oxidation. Appl Environ Microbiol 62:3967–3977

    PubMed  CAS  Google Scholar 

  • Shetty RS, Singhal RS, Kulkarni PR (1994) Antimicrobial properties of cumin. World J Microbiol Biotechnol 10:232–233. doi:10.1007/BF00360896

    Article  Google Scholar 

  • Singer CA, Crowley ED, Thomson PL (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130. doi:10.1016/S0167-7799(02)00041-0

    Article  PubMed  CAS  Google Scholar 

  • Suttinun O, Lederman BP, Luepromchai E (2004) Application of terpene-induced cell for enhancing biodegradation of TCE contaminated soil. Songklanakarin J Sci Technol 26(suppl 1):131–142

    Google Scholar 

  • Tandlich R, Brezna B, Dercova K (2001) The effect of terpenes on the biodegradation of polychlorinated biphynyls by Pseudomonas stutzeri. Chemosphere 44:1547–1555. doi:10.1016/S0045-6535(00)00523-3

    Article  PubMed  CAS  Google Scholar 

  • Wackett LP, Brusseau GA, Householder SR, Hanson RS (1989) Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol 55:2960–2964

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM) and the 90th Anniversary of Chulalongkorn University Fund, Chulalongkorn University. The authors wish to thank the Environmental Research Institute, Chulalongkorn University, for the support on scientific instruments and laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekawan Luepromchai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suttinun, O., Müller, R. & Luepromchai, E. Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils. Biodegradation 20, 281–291 (2009). https://doi.org/10.1007/s10532-008-9220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9220-4

Keywords

Navigation