Skip to main content
Log in

Sensitivity of soil organic matter to climate and fire in a desert grassland

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Drylands contain a third of the organic carbon stored in global soils; however, the long-term dynamics of soil organic carbon in drylands remain poorly understood relative to dynamics of the vegetation carbon pool. We examined long-term patterns in soil organic matter (SOM) against both climate and prescribed fire in a Chihuahuan Desert grassland in central New Mexico, USA. SOM concentration was estimated by loss-on-ignition from soils at 0–20 cm depth each spring and fall for 25 years (1989–2014) in unburned desert grassland and from 2003 to 2014 following a prescribed fire. SOM concentration did not have a long-term trend but fluctuated seasonally at both burned and unburned sites, ranging from a minimum of 0.9% to a maximum of 3.3%. SOM concentration declined nonlinearly in wet seasons and peaked in dry seasons. These long-term results contrast not only with the positive relationships between aboveground net primary production and precipitation for this region, but also with previous reports that wetter sites have more SOM across drylands globally, suggesting that space is not a good substitute for time in predicting dryland SOM dynamics. We suggest that declines in SOM in wet periods are caused by increased soil respiration, runoff, leaching, and/or soil erosion. In addition to tracking natural variability in climate, SOM concentration also decreased 14% following prescribed fire, a response that magnified over time and has persisted for nearly a decade due to the slow recovery of primary production. Our results document the surprisingly dynamic nature of soil organic matter and its high sensitivity to climate and fire in a dry grassland ecosystem characteristic of the southwestern USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and code availability

Data and code associated with this study are available at Environmental Data Initiative Data Portal: https://doi.org/10.6073/pasta/d2d7344c94a67d2ce5dd3b53a2dea839.

References

  • Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK (2015) The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348(6237):895–899

    Article  Google Scholar 

  • Alexis MA, Rasse DP, Knicker H, Anquetil C, Rumpel C (2012) Evolution of soil organic matter after prescribed fire: a 20-year chronosequence. Geoderma 189–190:98–107

    Article  Google Scholar 

  • Allen DE, Pringle MJ, Page KL, Dalal RC (2010) A review of sampling designs for the measurement of soil organic carbon in Australian grazing lands. Rangeland J 32(2):227–246

    Article  Google Scholar 

  • Anderson-Teixeira KJ, Delong JP, Fox AM, Brese DA, Litvak ME (2011) Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Glob Change Biol 17(1):410–424

    Article  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442(7102):555

    Article  Google Scholar 

  • Barton K (2020) MuMIn: multi-model inference. version 1.43.17, https://CRAN.R-project.org/package=MuMIn

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67. https://doi.org/10.18637/jss.v067.i01

  • Biederman JA, Scott RL, Bell TW, Bowling DR, Dore S, Garatuza-Payan J, Kolb TE, Krishnan P, Krofcheck DJ, Litvak ME (2017) CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Glob Change Biol 23(10):4204–4221

    Article  Google Scholar 

  • Brandt L, King J, Hobbie S, Milchunas D, Sinsabaugh R (2010) The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13(5):765–781

    Article  Google Scholar 

  • Brazier RE, Turnbull L, Wainwright J, Bol R (2014) Carbon loss by water erosion in drylands: implications from a study of vegetation change in the south-west USA. Hydrol Process 28(4):2212–2222

    Article  Google Scholar 

  • Breheny P, Burchett W (2017) Visualization of regression models using visreg. R J 9:56–71

    Article  Google Scholar 

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS (1989) Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci Soc Am J 53(3):800–805

    Article  Google Scholar 

  • Burke JA, Lewis KL, Ritchie GL, Moore-Kucera J, DeLaune PB, Keeling JW (2019) Temporal variability of soil carbon and nitrogen in cotton production on the Texas high plains. Agron J 111(5):2218–2225

    Article  Google Scholar 

  • Burnett SA, Hattey JA, Johnson JE, Swann AL, Moore DI, Collins SL (2012) Effects of fire on belowground biomass in Chihuahuan desert grassland. Ecosphere 3(11):art107

    Article  Google Scholar 

  • Butler OM, Elser JJ, Lewis T, Mackey B, Chen C (2018) The phosphorus-rich signature of fire in the soil–plant system: a global meta-analysis. Ecol Lett 21:335–344

    Article  Google Scholar 

  • Buxbaum C, Vanderbilt K (2007) Soil heterogeneity and the distribution of desert and steppe plant species across a desert-grassland ecotone. J Arid Environ 69(4):617–632

    Article  Google Scholar 

  • Chen S, Huang Y, Zou J, Shi Y (2013) Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Glob Planet Change 100:99–108

    Article  Google Scholar 

  • Chen L, Smith P, Yang Y (2015) How has soil carbon stock changed over recent decades? Glob Change Biol 21(9):3197–3199

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570

  • Collins SL, Ladwig LM, Petrie MD, Jones SK, Mulhouse JM, Thibault JR, Pockman WT (2017) Press–pulse interactions: effects of warming, N deposition, altered winter precipitation, and fire on desert grassland community structure and dynamics. Glob Change Biol 23(3):1095–1108

    Article  Google Scholar 

  • Collins SL, Chung YA, Baur LE, Hallmark A, Ohlert TJ, Rudgers JA (2020) Press–pulse interactions and long-term community dynamics in a Chihuahuan Desert grassland. J Veg Sci. https://doi.org/10.1111/jvs.12881

    Article  Google Scholar 

  • Cunliffe AM, Puttock AK, Turnbull L, Wainwright J, Brazier RE (2016) Dryland, calcareous soils store (and lose) significant quantities of near-surface organic carbon. J Geophys Res Earth Surf 121(4):684–702

    Article  Google Scholar 

  • D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344

    Article  Google Scholar 

  • de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12(11):2077–2091

    Article  Google Scholar 

  • Dukes D, Gonzales HB, Ravi S, Grandstaff DE, Van Pelt RS, Li J, Wang G, Sankey JB (2018) Quantifying postfire aeolian sediment transport using rare earth element tracers. J Geophys Res Biogeosci 123(1):288–299

    Article  Google Scholar 

  • Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Hauck J, Peters GP, Peters W, Pongratz J, Sitch S, Le Quéré C, Bakker DCE, Canadell JG, Ciais P, Jackson RB, Anthoni P, Barbero L, Bastos A, Bastrikov V, Becker M, Bopp L, Buitenhuis E, Chandra N, Chevallier F, Chini LP, Currie KI, Feely RA, Gehlen M, Gilfillan D, Gkritzalis T, Goll DS, Gruber N, Gutekunst S, Harris I, Haverd V, Houghton RA, Hurtt G, Ilyina T, Jain AK, Joetzjer E, Kaplan JO, Kato E, Klein Goldewijk K, Korsbakken JI, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Marland G, McGuire PC, Melton JR, Metzl N, Munro DR, Nabel JEMS, Nakaoka SI, Neill C, Omar AM, Ono T, Peregon A, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Séférian R, Schwinger J, Smith N, Tans PP, Tian H, Tilbrook B, Tubiello FN, van der Werf GR, Wiltshire AJ, Zaehle S (2019) Global carbon budget 2019. Earth Syst Sci Data 11(4):1783–1838

    Article  Google Scholar 

  • Gaitán JJ, Maestre FT, Bran DE, Buono GG, Dougill AJ, García Martínez G, Ferrante D, Guuroh RT, Linstädter A, Massara V, Thomas AD, Oliva GE (2019) Biotic and abiotic drivers of topsoil organic carbon concentration in drylands have similar effects at regional and global scales. Ecosystems 22(7):1445–1456

    Article  Google Scholar 

  • Gherardi LA, Sala OE (2019) Effect of inter-annual precipitation variability on dryland productivity: a global synthesis. Glob Change Biol 25:269–276

    Article  Google Scholar 

  • Gosz JR, Moore DI, Shore GA, Grover HD, Rison W, Rison C (1995) Lightning estimates of precipitation location and quantity on the Sevilleta LTER, New Mexico. Ecol Appl 5(4):1141–1150

    Article  Google Scholar 

  • Haverd V, Ahlström A, Smith B, Canadell JG (2017) Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall. Glob Change Biol 23(2):793–800

    Article  Google Scholar 

  • Hoffmann M, Jurisch N, Garcia Alba J, Albiac Borraz E, Schmidt M, Huth V, Rogasik H, Rieckh H, Verch G, Sommer M, Augustin J (2017) Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories. Biogeosciences 14(4):1003–1019

    Article  Google Scholar 

  • Hsu JS, Powell J, Adler PB (2012) Sensitivity of mean annual primary production to precipitation. Glob Change Biol 18(7):2246–2255

    Article  Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Change 6(2):166–171

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. a special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Cambridge

  • Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48(1):419–445

    Article  Google Scholar 

  • Kasozi GN, Nkedi-Kizza P, Harris WG (2009) Varied carbon content of organic matter in histosols, spodosols, and carbonatic soils. Soil Sci Soc Am J 73(4):1313–1318

    Article  Google Scholar 

  • Kieft TL, White CS, Loftin SR, Aguilar R, Craig JA, Skaar DA (1998) Temporal dynamics in soil carbon and nitrogen resources at a grassland–shrubland ecotone. Ecology 79(2):671–683

    Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291(5503):481–484

    Article  Google Scholar 

  • Knapp AK, Ciais P, Smith MD (2017) Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytol 214(1):41–47

    Article  Google Scholar 

  • Kurc SA, Small EE (2004) Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour Res 40(9):W09305. https://doi.org/10.1029/2004wr003068

    Article  Google Scholar 

  • Ladwig LM, Collins SL, Ford PL, White LB (2014) Chihuahuan desert grassland responds similarly to fall, spring, and summer fires during prolonged drought. Rangel Ecol Manag 67(6):621–628

    Article  Google Scholar 

  • Lal R (2019) Carbon cycling in global drylands. Curr Clim Change Rep 5:221–232

    Article  Google Scholar 

  • Lenth R, Singmann H, Love J, Buerkner P, Herve M (2018) Emmeans: estimated marginal means, aka least-squares means, R package Version 1.4.7. https://cran.r-project.org/web/packages/emmeans/index.html

  • Li C, Zhang C, Luo G, Chen X, Maisupova B, Madaminov AA, Han Q, Djenbaev BM (2015) Carbon stock and its responses to climate change in Central Asia. Glob Change Biol 21(5):1951–1967

    Article  Google Scholar 

  • Liu Y, He N, Wen X, Xu L, Sun X, Yu G, Liang L, Schipper LA (2018) The optimum temperature of soil microbial respiration: patterns and controls. Soil Biol Biochem 121:35–42

    Article  Google Scholar 

  • Lu X, Wang YP, Luo Y, Jiang L (2018) Ecosystem carbon transit versus turnover times in response to climate warming and rising atmospheric CO2 concentration. Biogeosciences 15(21):6559–6572

    Article  Google Scholar 

  • Luo Y, Jiang L, Niu S, Zhou X (2017) Nonlinear responses of land ecosystems to variation in precipitation. New Phytol 214(1):5–7

    Article  Google Scholar 

  • Luo Z, Wang G, Wang E (2019) Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat Commun 10(1):3688

    Article  Google Scholar 

  • Maurer GE, Hallmark AJ, Brown RF, Sala OE, Collins SL (2020) Sensitivity of primary production to precipitation across the United States. Ecol Lett. https://doi.org/10.1111/ele.13455

    Article  Google Scholar 

  • Mulhouse JM, Hallett LM, Collins SL (2017) The influence of seasonal precipitation and grass competition on 20 years of forb dynamics in northern Chihuahuan Desert grassland. J Veg Sci 28(2):250–259

    Article  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122(1):51–71

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Methods of soil analysis: Part 3 Chemical methods, pp 961–1010

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4(1):25–51

    Article  Google Scholar 

  • Pandher LK, Gupta RK, Kukal SS (2019) Seasonal variations in C and N fractions under tree-based cropping systems in typic ustochrepts. Trop Ecol 60(3):455–461

    Article  Google Scholar 

  • Parmenter RR (2008) Long-term effects of a summer fire on desert grassland plant demographics in New Mexico. Rangel Ecol Manag 61(2):156–168

    Article  Google Scholar 

  • Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Change Biol 24(1):1–12

    Article  Google Scholar 

  • Pellegrini AFA, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP, Staver AC, Scharenbroch BC, Jumpponen A, Anderegg WRL, Randerson JT, Jackson RB (2018) Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553(7687):194–198

    Article  Google Scholar 

  • Pendergrass AG, Knutti R, Lehner F, Deser C, Sanderson BM (2017) Precipitation variability increases in a warmer climate. Sci Rep 7(1):17966

    Article  Google Scholar 

  • Petrie MD, Collins SL, Gutzler DS, Moore DM (2014) Regional trends and local variability in monsoon precipitation in the northern Chihuahuan Desert, USA. J Arid Environ 103:63–70

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2017) nlme: linear and nonlinear mixed effects models. R package version 3.1-148, https://CRAN.R-project.org/package=nlme

  • Plaza C, Gascó G, Méndez AM, Zaccone C, Maestre FT (2018a) Soil organic matter in dryland ecosystems. In: Garcia C, Nannipieri P, Hernandez T (eds) The future of soil carbon. Elsevier, Amsterdam, pp 39–70

    Google Scholar 

  • Plaza C, Zaccone C, Sawicka K, Méndez AM, Tarquis A, Gascó G, Heuvelink GBM, Schuur EAG, Maestre FT (2018b) Soil resources and element stocks in drylands to face global issues. Sci Rep 8(1):13788

    Article  Google Scholar 

  • Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–603

    Article  Google Scholar 

  • Prăvălie R, Bandoc G, Patriche C, Sternberg T (2019) Recent changes in global drylands: evidences from two major aridity databases. CATENA 178:209–231

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. http://www.R-project.org/

  • Reynolds JF, Smith DMS, Lambin EF, Turner B, Mortimore M, Batterbury SP, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE (2007) Global desertification: building a science for dryland development. Science 316(5826):847–851

    Article  Google Scholar 

  • Rudgers JA, Chung YA, Maurer GE, Moore DI, Muldavin EH, Litvak ME, Collins SL (2018) Climate sensitivity functions and net primary production: a framework for incorporating climate mean and variability. Ecology 99(3):576–582

    Article  Google Scholar 

  • Rudgers JA, Hallmark A, Baker SR, Baur L, Hall KM, Litvak ME, Muldavin EH, Pockman WT, Whitney KD (2019) Sensitivity of dryland plant allometry to climate. Funct Ecol 33(12):2290–2303

    Article  Google Scholar 

  • Rudgers J, Collins S, White C, Moore D (2020) Long-term dynamics of soil organic matter and aboveground net primary production in a Chihuahuan Desert Grassland at the Sevilleta National Wildlife Refuge, New Mexico (1989-2014) ver 1. Environ Data Initiat. https://doi.org/10.6073/pasta/d2d7344c94a67d2ce5dd3b53a2dea839

    Article  Google Scholar 

  • Sala OE, Gherardi LA, Reichmann L, Jobbagy E, Peters D (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc Lond B Biol Sci 367(1606):3135–3144

    Article  Google Scholar 

  • Sawyer R, Bradstock R, Bedward M, Morrison RJ (2018) Fire intensity drives post-fire temporal pattern of soil carbon accumulation in Australian fire-prone forests. Sci Total Environ 610–611:1113–1124

    Article  Google Scholar 

  • Schimel DS (2010) Drylands in the earth system. Science 327(5964):418–419

    Article  Google Scholar 

  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56

    Article  Google Scholar 

  • Schrumpf M, Schulze ED, Kaiser K, Schumacher J (2011) How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences 8(5):1193–1212

    Article  Google Scholar 

  • Shen W, Jenerette GD, Hui D, Scott RL (2016) Precipitation legacy effects on dryland ecosystem carbon fluxes: direction, magnitude and biogeochemical carryovers. Biogeosciences 13(2):425–439

    Article  Google Scholar 

  • Smith P (2004) How long before a change in soil organic carbon can be detected? Glob Change Biol 10(11):1878–1883

    Article  Google Scholar 

  • Smith P, Soussana J-F, Angers D, Schipper L, Chenu C, Rasse DP, Batjes NH, van Egmond F, McNeill S, Kuhnert M, Arias-Navarro C, Olesen JE, Chirinda N, Fornara D, Wollenberg E, Álvaro-Fuentes J, Sanz-Cobena A, Klumpp K (2020) How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob Change Biol 26(1):219–241

    Article  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389(6647):170–173

    Article  Google Scholar 

  • Turnbull L, Wainwright J, Brazier RE (2010) Changes in hydrology and erosion over a transition from grassland to shrubland. Hydrol Process 24(4):393–414

    Google Scholar 

  • Turner BL, Yavitt JB, Harms KE, Garcia MN, Wright SJ (2015) Seasonal changes in soil organic matter after a decade of nutrient addition in a lowland tropical forest. Biogeochemistry 123(1):221–235

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, van Marle MJE, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997–2016. Earth Syst Sci Data 9(2):697–720

    Article  Google Scholar 

  • Vargas R, Collins SL, Thomey ML, Johnson JE, Brown RF, Natvig DO, Friggens MT (2012) Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Glob Change Biol 18(4):1401–1411

    Article  Google Scholar 

  • Vázquez DP, Gianoli E, Morris WF, Bozinovic F (2017) Ecological and evolutionary impacts of changing climatic variability. Biol Rev 92(1):22–42

    Article  Google Scholar 

  • Vicca S, Bahn M, Estiarte M, van Loon EE, Vargas R, Alberti G, Ambus P, Arain MA, Beier C, Bentley LP, Borken W, Buchmann N, Collins SL, de Dato G, Dukes JS, Escolar C, Fay P, Guidolotti G, Hanson PJ, Kahmen A, Kröel-Dulay G, Ladreiter-Knauss T, Larsen KS, Lellei-Kovacs E, Lebrija-Trejos E, Maestre FT, Marhan S, Marshall M, Meir P, Miao Y, Muhr J, Niklaus PA, Ogaya R, Peñuelas J, Poll C, Rustad LE, Savage K, Schindlbacher A, Schmidt IK, Smith AR, Sotta ED, Suseela V, Tietema A, van Gestel N, van Straaten O, Wan S, Weber U, Janssens IA (2014) Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments. Biogeosciences 11(11):2991–3013

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718

    Article  Google Scholar 

  • Werner CM, Stuble KL, Groves AM, Young TP (2020) Year effects: interannual variation as a driver of community assembly dynamics. Ecology. https://doi.org/10.1002/ecy.3104

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313(5789):940–943

    Article  Google Scholar 

  • Westman CJ, Hytönen J, Wall A (2006) Loss-on-ignition in the determination of pools of organic carbon in soils of forests and afforested arable fields. Commun Soil Sci Plant Anal 37(7–8):1059–1075

    Article  Google Scholar 

  • White C, Moore D (2016) Available nitrogen and potentially mineralizable nitrogen in a Chihuahuan Desert grassland at the Sevilleta National Wildlife Refuge, New Mexico (1989-2014) ver 265065. Environ Data Initiat. https://doi.org/10.6073/pasta/67b0cfde84800a08d37e4e94a403bfa8

    Article  Google Scholar 

  • White CS, Moore DI, Craig JA (2004) Regional-scale drought increases potential soil fertility in semiarid grasslands. Biol Fertil Soils 40(1):73–78

    Article  Google Scholar 

  • Wuest S (2014) Seasonal variation in soil organic carbon. Soil Sci Soc Am J 78(4):1442–1447

    Article  Google Scholar 

  • Xu LK, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric For Meteorol 123(1–2):79–96

    Article  Google Scholar 

  • Xu LK, Baldocchi DD, Tang JW (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Glob Biogeochem Cycles. https://doi.org/10.1029/2004GB002281

    Article  Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation for Long-Term Ecological Research including DEB 1655499 and 1748133.

Author information

Authors and Affiliations

Authors

Contributions

CSW, DIM, JAR, and SLC designed the study. CSW and DIM collected soil samples and performed soil analyses. SLC and JAR provided ANPP data. EH and JAR performed the statistical analyses. EH wrote the first draft with significant contributions from all authors.

Corresponding author

Correspondence to Enqing Hou.

Additional information

Responsible Editor: William R. Wieder.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1016 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, E., Rudgers, J.A., Collins, S.L. et al. Sensitivity of soil organic matter to climate and fire in a desert grassland. Biogeochemistry 156, 59–74 (2021). https://doi.org/10.1007/s10533-020-00713-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-020-00713-3

Keywords

Navigation