Skip to main content
Log in

The effect of copper deficiency on the formation of hemosiderin in sprague-dawley rats

  • Original Paper
  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

We demonstrated previously that loading iron into ferritin via its own ferroxidase activity resulted in damage to the ferritin while ferritin loaded by ceruloplasmin, a copper-containing ferroxidase, was not damaged and had similar characteristics to native ferritin (Welch et al. (2001) Free Radic Biol Med 31:999–1006). Interestingly, it has been suggested that the formation of hemosiderin, a proposed degradation product of ferritin, is increased in animals deficient in copper. In this study, groups of rats were fed normal diets, copper deficient diets, iron supplemented diets, or copper deficient-iron supplemented diets for 60 days. Rats fed copper-deficient diets had no detectable active serum ceruloplasmin, which indicates that they were functionally copper deficient. There was a significant increase in the amount of iron in isolated hemosiderin fractions from the livers of copper-deficient rats, even more than that found in rats fed only an iron-supplemented diet. Histological analysis showed that copper-deficient rats had iron deposits (which are indicative of hemosiderin) in their hepatocytes and Kupffer cells, whereas rats fed diets sufficient in copper only had iron deposits in their Kupffer cells. Histologic evidence of iron deposition was more pronounced in rats fed diets that were deficient in copper. Additionally, sucrose density-gradient sedimentation profiles of ferritin loaded with iron in vitro via its own ferroxidase activity was found to have similarities to that of the sedimentation profile of the hemosiderin fraction from rat livers. The implications of these data for the possible mechanism of hemosiderin formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bakker GR, Boyer RF (1986) Iron incorporation into apoferritin. The role of apoferritin as a ferroxidase. J Biol Chem 261:13182–13185

    PubMed  CAS  Google Scholar 

  • Boyer RF, Schori BE (1983) The incorporation of iron into apoferritin as mediated by ceruloplasmin. Biochem Biophys Res Commun 116:244–250

    Article  PubMed  CAS  Google Scholar 

  • Brumby PE, Massey V (1967) [73] Determination of nonheme iron, total iron, and copper. in Methods in Enzymology. Academic Press, 463–474

  • Casey JL, Hentze MW, Koeller DM et al (1988) Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240:924–928

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Huang G, Su T et al (2006) Decreased hephaestin activity in the intestine of copper-deficient mice causes systemic iron deficiency. J Nutr 136:1236–1241

    PubMed  CAS  Google Scholar 

  • Chua-Anusorn W, Webb J, Macey DJ et al (1999) The effect of prolonged iron loading on the chemical form of iron oxide deposits in rat liver and spleen. Biochem Biophys Acta 1454:191–200

    PubMed  CAS  Google Scholar 

  • deSilva D, Aust SD (1992) Stoichiometry of Fe(II) oxidation during ceruloplasmin-catalyzed loading of ferritin. Arch Biochem Biophys 298:259–264

    Article  CAS  Google Scholar 

  • deSilva D, Guo JH, Aust SD (1993) Relationship between iron and phosphate in mammalian ferritins. Arch Biochem Biophys 303:451–455

    Article  CAS  Google Scholar 

  • deSilva D, Miller DM, Reif DW et al (1992) In vitro loading of apoferritin. Arch Biochem Biophys 293:409–415

    Article  CAS  Google Scholar 

  • Grady JK, Chen Y, Chasteen ND et al (1989) Hydroxyl radical production during oxidative deposition of iron in ferritin. J Biol Chem 264:20224–20229

    PubMed  CAS  Google Scholar 

  • Granick S, Hahn PF (1944) Ferritin VIII. Speed of uptake of iron by the liver and its conversion to ferritin iron. J Biol Chem 155:661–669

    CAS  Google Scholar 

  • Guo JH, Abedi M, Aust SD (1996) Expression and loading of recombinant heavy and light chain homopolymers of rat liver ferritin. Arch Biochem Biophys 335:197–204

    Article  PubMed  CAS  Google Scholar 

  • Harris ZL, Gitlin JD (1996) Genetic and molecular basis for copper toxicity. Am J Clin Nutr 63:836S–841S

    PubMed  CAS  Google Scholar 

  • Harris ZL, Klomp LW, Gitlin JD (1998) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr 67:972S–977S

    PubMed  CAS  Google Scholar 

  • Harris ZL, Takahashi Y, Miyajima H et al (1995) Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci USA 92:2539–2543

    Article  PubMed  CAS  Google Scholar 

  • Hentze MW, Caughman SW, Rouault TA et al (1987) Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238:1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Iancu TC (1992) Ferritin and hemosiderin in pathological tissues. Electron Microsc Rev 5:209–229

    Article  PubMed  CAS  Google Scholar 

  • Juan SH, Aust SD (1998) Studies on the interaction between ferritin and ceruloplasmin. Arch Biochem Biophys 355:56–62

    Article  PubMed  CAS  Google Scholar 

  • Juan SH, Guo JH, Aust SD (1997) Loading of iron into recombinant rat liver ferritin heteropolymers by ceruloplasmin. Arch Biochem Biophys 341:280–286

    Article  PubMed  CAS  Google Scholar 

  • Kato J, Kobune M, Kohgo Y et al (1996) Hepatic iron deprivation prevents spontaneous development of fulminant hepatitis and liver cancer in Long-Evans Cinnamon rats. J Clin Invest 98:923–929

    PubMed  CAS  Google Scholar 

  • Kehoe CA, Faughnan MS, Gilmore WS et al (2000) Plasma diamine oxidase activity is greater in copper-adequate than copper-marginal or copper-deficient rats. J Nutr 130:30–33

    PubMed  CAS  Google Scholar 

  • Lawson DM, Treffry A, Artymiuk PJ et al (1989) Identification of the ferroxidase centre in ferritin. FEBS Lett 254:207–210

    Article  PubMed  CAS  Google Scholar 

  • Lee GR, Nacht S, Lukens JN et al (1968) Iron metabolism in copper-deficient swine. J Clin Invest 47:2058–2069

    PubMed  CAS  Google Scholar 

  • Luca P, Demelia L, Lecca S et al (2000) Massive hepatic haemosiderosis in Wilson’s disease. Histopathology 37:187–189

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki E, Kato J, Kobune M et al (2002) Denatured H-ferritin subunit is a major constituent of haemosiderin in the liver of patients with iron overload. Gut 50:413–419

    Article  PubMed  CAS  Google Scholar 

  • O’Connell MJ, Baum H, Peters TJ (1986) Haemosiderin-like properties of free-radical-modified ferritin. Biochem J 240:297–300

    PubMed  CAS  Google Scholar 

  • O’Connell MJ, Peters TJ (1987) Ferritin and haemosiderin in free radical generation, lipid peroxidation and protein damage. Chem Phys Lipids 45:241–249

    Article  PubMed  CAS  Google Scholar 

  • Okamoto N, Wada S, Oga T et al (1996) Hereditary ceruloplasmin deficiency with hemosiderosis. Hum Genet 97:755–758

    PubMed  CAS  Google Scholar 

  • Prohaska JR, Brokate B (2001) Lower copper, zinc-superoxide dismutase protein but not mRNA in organs of copper-deficient rats. Arch Biochem Biophys 393:170–176

    Article  PubMed  CAS  Google Scholar 

  • Ravin HA (1961) An improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med 58:161–168

    PubMed  CAS  Google Scholar 

  • Reilly CA (1999) Iron loading into ferritin by ceruloplasmin and a cellular ferroxidase. Ph.D. Dissertation, Utah State University

  • Reilly CA, Aust SD (1998) Iron loading into ferritin by an intracellular ferroxidase. Arch Biochem Biophys 359:69–76

    Article  PubMed  CAS  Google Scholar 

  • Reilly CA, Sorlie M, Aust SD (1998) Evidence for a protein-protein complex during iron loading into ferritin by ceruloplasmin. Arch Biochem Biophys 354:165–171

    Article  PubMed  CAS  Google Scholar 

  • Richter GW (1984) Studies of iron overload. Rat liver siderosome ferritin. Lab Invest 50:26–35

    PubMed  CAS  Google Scholar 

  • Roeser HP, Lee GR, Nacht S et al (1970) The role of ceruloplasmin in iron metabolism. J Clin Invest 49:2408–2417

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Grover TA, Aust SD (1992) Rat ceruloplasmin: resistance to proteolysis and kinetic comparison with human ceruloplasmin. Arch Biochem Biophys 293:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ryden L (1981) Ceruloplasmin. In: Contie R, (ed) Copper proteins and copper enzymes. CRC Press, 37–100

  • Selden C, Owen M, Hopkins JM et al (1980) Studies on the concentration and intracellular localization of iron proteins in liver biopsy specimens from patients with iron overload with special reference to their role in lysosomal disruption. Br J Haematol 44:593–603

    PubMed  CAS  Google Scholar 

  • Seo H, Xie B, Wang S et al (1996) Ultrastructure of hepatocytes in copper-deficient Sika deer (Cervus nippon Temminck). J Comp Pathol 114:283–290

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Miyajima H, Shirabe S et al (1996) Characterization of a nonsense mutation in the ceruloplasmin gene resulting in diabetes and neurodegenerative disease. Hum Mol Genet 5:81–84

    Article  PubMed  CAS  Google Scholar 

  • Theil EC (1990) The ferritin family of iron storage proteins. In: Meister A, (ed) Advances in enzymology and related areas of molecular biology. John Wiley & Sons, Inc., 421–449

  • Van Eden ME, Aust SD (2000) Intact human ceruloplasmin is required for the incorporation of iron into human ferritin. Arch Biochem Biophys 381:119–126

    Article  PubMed  CAS  Google Scholar 

  • Van Eden ME, Aust SD (2001) The consequences of hydroxyl radical formation on the stoichiometry and kinetics of ferrous iron oxidation by human apoferritin. Free Radic Biol Med 31:1007–1017

    Article  PubMed  Google Scholar 

  • Ward RJ, Ramsey M, Dickson DP et al (1994) Further characterisation of forms of haemosiderin in iron-overloaded tissues. Eur J Biochem 225:187–194

    Article  PubMed  CAS  Google Scholar 

  • Weir MP, Gibson JF, Peters TJ (1984) Biochemical studies on the isolation and characterization of human spleen haemosiderin. Biochem J 223:31–38

    PubMed  CAS  Google Scholar 

  • Welch KD, Reilly CA, Aust SD (2002) The role of cysteine residues in the oxidation of ferritin. Free Radic Biol Med 33:399–408

    Article  PubMed  CAS  Google Scholar 

  • Welch KD, Van Eden ME, Aust SD (2001) Modification of ferritin during iron loading. Free Radic Biol Med 31:999–1006

    Article  PubMed  CAS  Google Scholar 

  • Whittaker P, Hines FA, Robl MG et al (1996) Histopathological evaluation of liver, pancreas, spleen, and heart from iron-overloaded Sprague-Dawley rats. Toxicol Pathol 24:558–563

    Article  PubMed  CAS  Google Scholar 

  • Williams DM, Kennedy FS, Green BG (1983) Hepatic iron accumulation in copper-deficient rats. Br J Nutr 50:653–660

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Chasteen ND (1991) Iron oxidation chemistry in ferritin. Increasing Fe/O2 stoichiometry during core formation. J Biol Chem 266:19965–19970

    PubMed  CAS  Google Scholar 

  • Yamaguchi K, Takahashi S, Kawanami T et al (1998) Retinal degeneration in hereditary ceruloplasmin deficiency. Ophthalmologica 212:11–14

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Chasteen ND (1999) Ferroxidase activity of ferritin: effects of pH, buffer and Fe(II) and Fe(III) concentrations on Fe(II) autoxidation and ferroxidation. Biochem J 338(Pt 3):615–618

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Furihata K, Takeda S et al (1995) A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet 9:267–272

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Terri Maughan for her secretarial assistance in preparation of the manuscript and Kent Udy and Paul Swaner for their assistance with animal husbandry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Aust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, K.D., Hall, J.O., Davis, T.Z. et al. The effect of copper deficiency on the formation of hemosiderin in sprague-dawley rats. Biometals 20, 829–839 (2007). https://doi.org/10.1007/s10534-006-9046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9046-7

Keywords

Navigation