Skip to main content
Log in

The impact of ionic mercury on antioxidant defenses in two mercury-sensitive anaerobic bacteria

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

While the toxicological effects of mercury (Hg) are well studied in mammals, little is known about the mechanisms of toxicity to bacterial cells lacking an Hg resistance (mer) operon. We determined that Shewanella oneidensis MR-1 is more sensitive to ionic mercury [Hg(II)] under aerobic conditions than in fumarate reducing conditions, with minimum inhibitory concentrations of 0.25 and 2 μM respectively. This increased sensitivity in aerobic conditions is not due to increased import, as more Hg is associated with cellular material in fumarate reducing conditions than in aerobic conditions. In fumarate reducing conditions, glutathione may provide protection, as glutathione levels decrease in a dose-dependent manner, but this does not occur in aerobic conditions. Hg(II) does not change the redox state of thioredoxin in MR1 in either fumarate reducing conditions or aerobic conditions, although thioredoxin is oxidized in Geobacter sulfurreducens PCA in response to Hg(II) treatment. However, treatment with 0.5 μM Hg(II) increases lipid peroxidation in aerobic conditions but not in fumarate reducing conditions in MR-1. We conclude that the enhanced sensitivity of MR-1 to Hg(II) in aerobic conditions is not due to differences in intracellular responses, but due to damage at the cell envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267(20):6102–6109

    Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  • Barkay T, Kritee K, Boyd E, Geesey G (2010) A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol 12(11):2904–2917

    Article  PubMed  CAS  Google Scholar 

  • Bersani NA, Merwin JR, Lopez NI, Pearson GD, Merrill GF (2002) Protein electrophoretic mobility shift assay to monitor redox state of thioredoxin in cells. Methods Enzymol 347:317–326

    Article  PubMed  CAS  Google Scholar 

  • Blindauer C (2011) Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16(7):1011–1024

    Google Scholar 

  • Botsoglou NA, Fletouris DJ, Papageorgiou GE, Vassilopoulos VN, Mantis AJ, Trakatellis AG (1994) Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J Agric Food Chem 42(9):1931–1937

    Article  CAS  Google Scholar 

  • Branco V, Canário J, Holmgren A, Carvalho C (2011) Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury. Toxicol Appl Pharmacol 251(2):95–103

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CLM, Chew E, Hashemy SI, Lu J, Holmgren A (2008) Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity. J Biol Chem 283:11913–11923

    Article  PubMed  CAS  Google Scholar 

  • Coppi MV, Leang C, Sandler SJ, Lovley DR (2001) Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187

    Article  PubMed  CAS  Google Scholar 

  • El-Demerdash F (2001) Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. J Environ Sci Health B 36(4):489–499

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC, Brown WC, Adams WB, Worsham MB (1978) Occurrence of glutathione in bacteria. J Bacteriol 133(3):1126–1129

    PubMed  CAS  Google Scholar 

  • Feldman E (2004) Thiobarbituric acid reactive substances (TBARS) assay. Animal models of diabetic complications consortium (AMDCC protocols). Version 1:1–3

    Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72(1):457–464

    Article  PubMed  CAS  Google Scholar 

  • Gabriel MC, Williamson DG (2004) Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ Geochem Health 26(4):421–434

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Barua S, Liang Y, Wu L, Dong Y, Reed S, Chen J, Culley D, Kennedy D, Yang Y (2010) Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration. Microb Biotechnol 3(4):455–466

    Article  PubMed  CAS  Google Scholar 

  • Gstraunthaler G, Pfaller W, Kotanko P (1983) Glutathione depletion and in vitro lipid peroxidation in mercury or maleate induced acute renal failure. Biochem Pharmacol 32(19):2969–2972

    Article  PubMed  CAS  Google Scholar 

  • Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 40(1):138–145

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    PubMed  CAS  Google Scholar 

  • Hungate R (1969) A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132

    Article  CAS  Google Scholar 

  • Jiang D, Heald SM, Sham T, Stillman MJ (1994) Structures of the cadmium, mercury, and zinc thiolate clusters in metallothionein: XAFS study of Zn7-MT, Cd7-MT, Hg7-MT, and Hg18-MT formed from rabbit liver metallothionein 2. J Am Chem Soc 116(24):11004–11013

    Article  CAS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E, Suzuki M, Coates J, Mason R (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919–7921

    Article  PubMed  CAS  Google Scholar 

  • Kobal AB, Horvat M, Prezelj M, Briški AS, Krsnik M, Dizdarevič T, Mazej D, Falnoga I, Stibilj V, Arnerič N (2004) The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol 17(4):261–274

    Article  PubMed  CAS  Google Scholar 

  • Lu TH, Chen CH, Lee MJ, Ho TJ, Leung YM, Hung DZ, Yen CC, He TY, Chen YW (2010) Methylmercury chloride induces alveolar type II epithelial cell damage through an oxidative stress-related mitochondrial cell death pathway. Toxicol Lett 194(3):70–78

    Article  PubMed  CAS  Google Scholar 

  • Lund B-O, Miller DM, Woods JS (1991) Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria. Biochem Pharmacol 42 Suppl:S181–S186

    Article  PubMed  CAS  Google Scholar 

  • Lund B-O, Miller DM, Woods JS (1993) Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem Pharmacol 45(10):2017–2024

    Article  PubMed  CAS  Google Scholar 

  • Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8(5–6):753–762. doi:10.1089/ars.2006.8.753

    Article  PubMed  CAS  Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11

    Article  PubMed  CAS  Google Scholar 

  • Mousavi A, Chavez RD, Ali A-MS, Cabaniss SE (2011) Mercury in natural waters: a mini-review. Environ Forensics 12(1):14–18. doi:10.1080/15275922.2010.547549

    Article  CAS  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240(4857):1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Nascimento AM, Chartone-Souza E (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res 2(1):92–101

    PubMed  Google Scholar 

  • Qin J, Clore GM, Gronenborn AM (1994) The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Structure 2(6):503–522

    Article  PubMed  CAS  Google Scholar 

  • Ranchou-Peyruse M, Monperrus M, Bridou R, Duran R, Amouroux D, Salvado J, Guyoneaud R (2009) Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers: implications for environmental studies. Geomicrobiol J 26(1):1–8

    Article  CAS  Google Scholar 

  • Sasse J, Gallagher SR (2001) Detection of proteins on blot transfer membranes. Current protocols in molecular biology. Greene Publishing Associates and Wiley Interscience, New York

  • Schaefer JK, Morel FM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2(2):123–126

    Article  CAS  Google Scholar 

  • Schaefer JK, Letowski J, Barkay T (2002) mer-Mediated resistance and volatilization of Hg(II) under anaerobic conditions. Geomicrobiol J 19(1):87–102

    Article  CAS  Google Scholar 

  • Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FM (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 108(21):8714–8719

    Article  PubMed  CAS  Google Scholar 

  • Schulter K (2000) Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ Geol 39:249–271

    Article  Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34(1):43–63

    Article  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336

    Article  PubMed  CAS  Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Review: environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175

    Article  PubMed  CAS  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293

    Article  CAS  Google Scholar 

  • Ung C, Lam S, Hlaing M, Winata C, Korzh S, Mathavan S, Gong Z (2010) Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. Bmc Genomics 11(1):212

    Article  PubMed  Google Scholar 

  • Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G (1994) A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol 10(5–6):415–421

    Article  PubMed  CAS  Google Scholar 

  • Virtanen JK, Voutilainen S, Rissanen TH, Mursu J, Tuomainen T-P, Korhonen MJ, Valkonen V-P, Seppänen K, Laukkanen JA, Salonen JT (2005) Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol 25(1):228–233

    PubMed  CAS  Google Scholar 

  • Virtanen JK, Rissanen TH, Voutilainen S, Tuomainen T-P (2007) Mercury as a risk factor for cardiovascular diseases. J Nutr Biochem 18(2):75–85

    Article  PubMed  CAS  Google Scholar 

  • Wataha JC, Lewis JB, McCloud VV, Shaw M, Omata Y, Lockwood PE, Messer RL, Hansen JM (2008) Effect of mercury (II) on Nrf2, thioredoxin reductase-1 and thioredoxin-1 in human monocytes. Dent Mater 24(6):765–772

    Article  PubMed  CAS  Google Scholar 

  • Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40(21):6690–6696

    Article  PubMed  CAS  Google Scholar 

  • Zalups RK, George Cherian M (1992) Renal metallothionein metabolism after a reduction of renal mass. II. Effect of zinc pretreatment on the renal toxicity and intrarenal accumulation of inorganic mercury. Toxicology 71(1):103–117

    Article  PubMed  CAS  Google Scholar 

  • Zalups RK, Lash LH (1997) Depletion of glutathione in the kidney and the renal disposition of administered inorganic mercury. Drug Metab Dispos 25(4):516–523

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Wiatrowski.

Electronic supplementary material

Supplementary Fig. 1

Growth of MR-1 under aerobic conditions (a) or fumarate reducing conditions (b) in the presence of Hg(II). Thick line 0 Hg(II); open circles 0.1 μM Hg(II); open triangles 0.25 μM Hg(II); open squares 0.5 μM Hg(II); open diamonds 1 μM Hg(II); filled triangles 2 μM Hg(II); filled circles 5 μM Hg(II). Symbols represent the mean of triplicate cultures. Error bars represent standard deviation of the mean (PPT 146 kb)

Supplementary Fig. 2

Growth of PCA in the presence of Hg(II). Thick line 0 Hg(II); open circles 0.5 μM Hg(II); open squares 1.0 μM Hg(II); open triangles 5.0 μM Hg(II); closed squares 10 μM Hg(II); closed circles 25 μM Hg(II). Symbols represent the mean of triplicate cultures. Error bars represent standard deviation of the mean (PPT 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Robison, T. & Wiatrowski, H. The impact of ionic mercury on antioxidant defenses in two mercury-sensitive anaerobic bacteria. Biometals 26, 1023–1031 (2013). https://doi.org/10.1007/s10534-013-9679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9679-2

Keywords

Navigation