Skip to main content
Log in

Lipocalin 2 alleviates iron toxicity by facilitating hypoferremia of inflammation and limiting catalytic iron generation

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Lcn2:

Lipocalin 2

Lcn2KO:

Lipocalin 2 knockout

WT:

Wild-type

NGAL:

Neutrophil gelatinase-associated lipocalin

TG:

Triglycerides

LDH:

Lactate dehydrogenase

ALT:

Alanine transaminase

AST:

Aspartate transaminase

CI:

Catalytic iron

References

  • Akrawinthawong K, Shaw MK, Kachner J et al (2013) Urine catalytic iron and neutrophil gelatinase-associated lipocalin as companion early markers of acute kidney injury after cardiac surgery: a prospective pilot study. Cardiorenal Med 3:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao G, Clifton M, Hoette TM et al (2010) Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol 6:602–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao GH, Xu J, Hu FL, Wan XC, Deng SX, Barasch J (2013) EGCG inhibit chemical reactivity of iron through forming an Ngal-EGCG-iron complex. Biometals 26:1041–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcia AM, Harris HW (2005) Triglyceride-rich lipoproteins as agents of innate immunity. Clin Infect Dis 41(Suppl 7):S498–S503

    Article  CAS  PubMed  Google Scholar 

  • Boddaert N, Le Quan Sang KH, Rotig A et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408

    Article  CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Burkitt MJ, Milne L, Raafat A (2001) A simple, highly sensitive and improved method for the measurement of bleomycin-detectable iron: the ‘catalytic iron index’ and its value in the assessment of iron status in haemochromatosis. Clin Sci (Lond) 100(3):239–247

    Article  CAS  Google Scholar 

  • Cabantchik ZI (2014) Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol 5:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho FA, Aitken JD, Gewirtz AT, Vijay-Kumar M (2011) TLR5 activation induces secretory interleukin-1 receptor antagonist (sIL-1Ra) and reduces inflammasome-associated tissue damage. Mucosal Immunol 4:102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1826:129–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Current protocols in immunology/edited by John E Coligan [et al] 104, Unit 15 25

  • Chassaing B, Srinivasan G, Delgado MA, Young AN, Gewirtz AT, Vijay-Kumar M (2012) Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation. PLoS One 7:e44328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coudevylle N, Geist L, Hotzinger M et al (2010) The v-myc-induced Q83 lipocalin is a siderocalin. J Biol Chem 285:41646–41652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darshan D, Frazer DM, Wilkins SJ, Anderson GJ (2010) Severe iron deficiency blunts the response of the iron regulatory gene Hamp and pro-inflammatory cytokines to lipopolysaccharide. Haematologica 95:1660–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devireddy LR, Hart DO, Goetz DH, Green MR (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan LP, Wang HH, Wang DQ (2004) Cholesterol absorption is mainly regulated by the jejunal and ileal ATP-binding cassette sterol efflux transporters Abcg5 and Abcg8 in mice. J Lipid Res 45:1312–1323

    Article  CAS  PubMed  Google Scholar 

  • Dupic F, Fruchon S, Bensaid M et al (2002) Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice. Gut 51:648–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flo TH, Smith KD, Sato S et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102:783–788

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2011) Hepcidin and iron regulation, 10 years later. Blood 117:4425–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  • Handa P, Morgan-Stevenson V, Maliken BD et al (2016) Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am J Physiol Gastrointest Liver Physiol 310:G117–G127

    Article  PubMed  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  CAS  PubMed  Google Scholar 

  • Hoette TM, Abergel RJ, Xu J, Strong RK, Raymond KN (2008) The role of electrostatics in siderophore recognition by the immunoprotein Siderocalin. J Am Chem Soc 130:17584–17592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Hittelman W, Lu T et al (2009) NGAL decreases E-cadherin-mediated cell-cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells. Lab Investig 89:531–548

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Salahudeen AK (2002) Cold induces catalytic iron release of cytochrome P-450 origin: a critical step in cold storage-induced renal injury. Am J Transpl 2:631–639

    Article  CAS  Google Scholar 

  • Iwahashi H, Morishita H, Ishii T, Sugata R, Kido R (1989) Enhancement by catechols of hydroxyl-radical formation in the presence of ferric ions and hydrogen peroxide. J Biochem 105:429–434

    CAS  PubMed  Google Scholar 

  • Jiang W, Constante M, Santos MM (2008) Anemia upregulates lipocalin 2 in the liver and serum. Blood Cells Mol Dis 41:169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaitha S, Bashir M, Ali T (2015) Iron deficiency anemia in inflammatory bowel disease. World J Gastrointest Pathophysiol 6:62–72

    PubMed  PubMed Central  Google Scholar 

  • Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med 33:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S (2013) The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 65:1174–1194

    Article  CAS  PubMed  Google Scholar 

  • Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531:81–92

    Article  CAS  PubMed  Google Scholar 

  • Lele S, Shah S, McCullough PA, Rajapurkar M (2009) Serum catalytic iron as a novel biomarker of vascular injury in acute coronary syndromes. EuroIntervention 5:336–342

    Article  PubMed  Google Scholar 

  • Maitra D, Shaeib F, Abdulhamid I et al (2013) Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radic Biol Med 63:90–98

    Article  CAS  PubMed  Google Scholar 

  • Martines AM, Masereeuw R, Tjalsma H, Hoenderop JG, Wetzels JF, Swinkels DW (2013) Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat Rev Nephrol 9:385–398

    Article  CAS  PubMed  Google Scholar 

  • Masaratana P, Patel N, Latunde-Dada GO, Vaulont S, Simpson RJ, McKie AT (2013) Regulation of iron metabolism in Hamp (−/−) mice in response to iron-deficient diet. Eur J Nutr 52:135–143

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Mori K, Ma Q et al (2004) Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 15:3073–3082

    Article  PubMed  Google Scholar 

  • Mitchell KM, Dotson AL, Cool KM, Chakrabarty A, Benedict SH, LeVine SM (2007) Deferiprone, an orally deliverable iron chelator, ameliorates experimental autoimmune encephalomyelitis. Mult Scler 13:1118–1126

    Article  CAS  PubMed  Google Scholar 

  • Nairz M, Theurl I, Schroll A et al (2009) Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood 114:3642–3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Kawakami T, Yamamoto N et al. (2015) Activation of the NLRP3 inflammasome by cellular labile iron. Exp Hematol

  • Nemeth E, Rivera S, Gabayan V et al (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Investig 113:1271–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posey JE, Gherardini FC (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2007) Iron metabolism and infection. Food Nutr Bull 28:S515–S523

    Article  PubMed  Google Scholar 

  • Roudkenar MH, Halabian R, Bahmani P, Roushandeh AM, Kuwahara Y, Fukumoto M (2011) Neutrophil gelatinase-associated lipocalin: a new antioxidant that exerts its cytoprotective effect independent on heme oxygenase-1. Free Radical Res 45:810–819

    Article  CAS  Google Scholar 

  • Roudkenar MH, Halabian R, Ghasemipour Z et al (2008) Neutrophil gelatinase-associated lipocalin acts as a protective factor against H(2)O(2) toxicity. Arch Med Res 39:560–566

    Article  CAS  PubMed  Google Scholar 

  • Sanders CJ, Moore DA 3rd, Williams IR, Gewirtz AT (2008) Both radioresistant and hemopoietic cells promote innate and adaptive immune responses to flagellin. J Immunol 180:7184–7192

    Article  CAS  PubMed  Google Scholar 

  • Schiefner A, Skerra A (2015) The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds. Acc Chem Res 48:976–985

    Article  CAS  PubMed  Google Scholar 

  • Shah SV, Rajapurkar MM, Baliga R (2011) The role of catalytic iron in acute kidney injury. Clin J Am Soc Nephrol 6:2329–2331

    Article  PubMed  Google Scholar 

  • Shi H, Bencze KZ, Stemmler TL, Philpott CC (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320:1207–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V, Yeoh BS, Carvalho F, Gewirtz AT, Vijay-Kumar M (2015) Proneness of TLR5 deficient mice to develop colitis is microbiota dependent. Gut Microbes 6:279–283

    Article  PubMed  Google Scholar 

  • Srinivasan G, Aitken JD, Zhang B et al (2012) Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. J Immunol 189:1911–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley ER (1985) The macrophage colony-stimulating factor, CSF-1. Methods Enzymol 116:564–587

    Article  CAS  PubMed  Google Scholar 

  • Stein J, Hartmann F, Dignass AU (2010) Diagnosis and management of iron deficiency anemia in patients with IBD. Nat Rev Gastroenterol Hepatol 7:599–610

    Article  CAS  PubMed  Google Scholar 

  • Sulieman M, Asleh R, Cabantchik ZI et al (2004) Serum chelatable redox-active iron is an independent predictor of mortality after myocardial infarction in individuals with diabetes. Diabetes Care 27:2730–2732

    Article  PubMed  Google Scholar 

  • Sullivan JL (2009) Iron in arterial plaque: modifiable risk factor for atherosclerosis. Biochimica et biophysica acta 1790:718–723

    Article  CAS  PubMed  Google Scholar 

  • Thethi TK, Parsha K, Rajapurkar M et al (2011) Urinary catalytic iron in obesity. Clin Chem 57:272–278

    Article  CAS  PubMed  Google Scholar 

  • Torrance JD, Bothwell TH (1968) A simple technique for measuring storage iron concentrations in formalinised liver samples. S Afr J Med Sci 33:9–11

    CAS  PubMed  Google Scholar 

  • Walmsley TA, George PM, Fowler RT (1992) Colorimetric measurement of iron in plasma samples anticoagulated with EDTA. J Clin Pathol 45:151–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Harrington L, Trebicka E et al (2009) Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. J Clin Investig 119:3322–3328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Johnson EE, Shi HN, Walker WA, Wessling-Resnick M, Cherayil BJ (2008) Attenuated inflammatory responses in hemochromatosis reveal a role for iron in the regulation of macrophage cytokine translation. J Immunol 181:2723–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg ED (1997) The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40:578–583

    Article  CAS  PubMed  Google Scholar 

  • Weiss G (2009) Iron metabolism in the anemia of chronic disease. Biochimica et biophysica acta 1790:682–693

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Miyamoto T, Kashima H et al. (2016) Lipocalin 2 attenuates iron-related oxidative stress and prolongs the survival of ovarian clear cell carcinoma cells by up-regulating the CD44 variant. Free Radic Res, 1–36

  • Yang J, Goetz D, Li JY et al (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell 10:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Current protocols in immunology/edited by John E Coligan [et al] Chapter 14, Unit 14 11

Download references

Acknowledgments

We thank Dr. Gregory Shearer for his critical input.

Funding

This work was supported by grants from the National Institutes of Health (NIH) R01 (DK097865) and PSU Dean’s Schultz endowment, College of Health and Human Development Seed grant to M.V.-K. B.S.Y. is supported by NIH T32 (T32AI074551).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matam Vijay-Kumar.

Ethics declarations

Conflict of Interest

The authors have declared that no conflict of interest exists.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Yeoh, B.S., Saha, P. et al. Lipocalin 2 alleviates iron toxicity by facilitating hypoferremia of inflammation and limiting catalytic iron generation. Biometals 29, 451–465 (2016). https://doi.org/10.1007/s10534-016-9925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9925-5

Keywords

Navigation