Skip to main content

Advertisement

Log in

Microorganisms as scaffolds of host individuality: an eco-immunity account of the holobiont

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

There is currently a great debate about whether the holobiont, i.e. a multicellular host and its residential microorganisms, constitutes a biological individual. We propose that resident microorganisms have a general and important role in the individuality of the host organism, not the holobiont. Drawing upon the Equilibrium Model of Immunity (Eberl in Nat Rev Immunol 16:524–532, 2016), we argue that microorganisms are scaffolds of immune capacities and processes that determine the constituency and persistence of the host organism. A scaffolding perspective accommodates the contingency and heterogeneity of resident microorganisms while accounting for their necessity and unifying contributions to host individuality. In our symbiotic view of life, holobionts may not be organisms or units of selection, but macroorganisms cannot persist nor function as individuals without their scaffolding microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The term “macroorganism,” coined by O’Malley and Dupré (2007), refers to  multicellular beings that can accommodate a large number of microorganisms. Microorganisms, in turn, include a wide scope of taxa engaged in a broad range of symbiotic relations, e.g. mutualism, commensalism, parasitism, etc.

  2. See for instance, Margulis and Fester (1991), Dupré and O’Malley (2009), Bosch and McFall-Ngai (2011), Pradeu (2011), McFall-Ngai et al. (2013), Hutter et al. (2015), Gilbert and Epel (2016), Sapp (2016), Theis et al. (2016).

  3. See Zilber-Rosenberg and Rosenberg (2008), Gilbert et al. (2012), Bordenstein and Theis (2015), Lloyd (2017).

  4. See for instance, Turnbaugh et al. (2007), Zilber-Rosenberg and Rosenberg (2008), Gilbert et al. (2012), McFall-Ngai et al. (2013), Pradeu (2016), O’Malley (2014).

  5. Peter Godfrey-Smith pointed us to this reference in O’Malley (2016).

  6. Nevertheless, immunology is but one incomplete way to approach the overall roles of microorganisms in the life of the macroorganism host. Metabolic, evolutionary, and immunological considerations may churn out notions of individuality that cross-cut the holobiont.

  7. The names of the immune responses—Type 1, 2, 3—follow standard usage in immunology.

  8. Some key references: ecological developmental biology (Gilbert and Epel 2016), ecological physiology (Turner 2000), niche construction in behavior, ecology, and evolution (Odling-Smee et al. 2003; Sultan 2015); niche construction in developmental biology (Flynn et al. 2013), and eco-immunology (Demas and Nelson 2012).

  9. The balance between mutually inhibitory immune responses does not necessarily result in steady-state equilibria, but could also lead to oscillations or other dynamics. The main issue is that these dynamics are the consequences of microorganism regulation of immune responses, and that they promote the maintenance of host individuality. The focus on microorganism-induced dynamics at a higher level of organization is in line with studies on the high-level functional stability and low-level taxonomic variability of microorganism communities (Turnbaugh et al. 2009; Coyte et al. 2015; Taxis et al. 2015).

References

  • Allen JE, Sutherland TE (2014) Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin. Semin Immunol 26:329–340

    Article  Google Scholar 

  • Archie EA, Tung J (2015) Social behavior and the microbiome. Curr Opin Behav Sci 6:28–34

    Article  Google Scholar 

  • Bach J-F (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920

    Article  Google Scholar 

  • Bäckhed F, Roswall J, Peng Y et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703

    Article  Google Scholar 

  • Baldridge MT, Nice TJ, McCune BT et al (2015) Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 347:266–269

    Article  Google Scholar 

  • Barton ES, White DW, Cathelyn JS et al (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447:326–329

    Article  Google Scholar 

  • Bevins CL, Salzman NH (2011) The potter’s wheel: the host’s role in sculpting its microbiota. Cell Mol Life Sci 68:3675–3685

    Article  Google Scholar 

  • Bickhard MH (2005) Functional scaffolding and self-scaffolding. New Ideas Psychol 23:166–173

    Article  Google Scholar 

  • Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15:749–795

    Article  Google Scholar 

  • Booth A (2014) Symbiosis, selection, and individuality. Biol Philos 29:657–673

    Article  Google Scholar 

  • Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226

    Article  Google Scholar 

  • Bosch TC, McFall-Ngai MJ (2011) Metaorganisms as the new frontier. Zoology 114:185–190

    Article  Google Scholar 

  • Bouskra D, Brézillon C, Bérard M et al (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507–510

    Article  Google Scholar 

  • Burcelin R, Garidou L, Pomié C (2012) Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol 24:67–74

    Article  Google Scholar 

  • Cahenzli J, Köller Y, Wyss M et al (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:559–570

    Article  Google Scholar 

  • Caporael LR, Griesemer JR, Wimsatt WC (eds) (2013) Developing scaffolds in evolution, culture, and cognition. MIT Press, Cambridge

    Google Scholar 

  • Chiu L, Gilbert SF (2015) The birth of the holobiont: multi-species birthing through mutual scaffolding and niche construction. Biosemiotics 8(2):191–210

    Article  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    Google Scholar 

  • Christian N, Whitaker BK, Clay K (2015) Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol 6:869

    Article  Google Scholar 

  • Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350:663–666

    Article  Google Scholar 

  • Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  Google Scholar 

  • da Fonseca DM, Hand TW, Han S-J et al (2015) Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163:354–366

    Article  Google Scholar 

  • Demas G, Nelson R (eds) (2012) Ecoimmunology. Oxford University Press, New York

    Google Scholar 

  • Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449:811–818

    Article  Google Scholar 

  • Douglas AE, Werren JH (2016) Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio 7:e02099-15

    Article  Google Scholar 

  • Dupré J, O’Malley MA (2009) Varieties of living things: life at the intersection of lineage and metabolism. Philos Theory Biol 1:1–25

    Google Scholar 

  • Eberl G (2010) A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol 3:450–460

    Article  Google Scholar 

  • Eberl G (2016) Immunity by equilibrium. Nat Rev Immunol 16:524–532

    Article  Google Scholar 

  • Eberl G, Colonna M, Di Santo JP, McKenzie ANJ (2015) Innate lymphoid cells: a new paradigm in immunology. Science 348:aaa6566

    Article  Google Scholar 

  • Flynn EG, Laland KN, Kendal RL, Kendal JR (2013) Target article with commentaries: developmental niche construction. Dev Sci 16:296–313

    Article  Google Scholar 

  • Gilbert SF, Epel D (2016) Ecological developmental biology, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341

    Article  Google Scholar 

  • Godfrey-Smith P (2009) Darwinian populations and natural selection. Oxford University Press, Oxford

  • Godfrey-Smith P (2013) Darwinian individuals. In: Bouchard F, Huneman P (eds) From groups to individuals: evolution and emerging individuality. MIT Press, Cambridge, pp 17–36

    Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  Google Scholar 

  • Griesemer JR (2014a) Reproduction and scaffolded developmental processes: an integrated evolutionary perspective. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, pp 183–202

    Chapter  Google Scholar 

  • Griesemer JR (2014b) Reproduction and the scaffolded development of hybrids. In: Caporael LR, Griesemer JR, Wimsatt WC (eds) Developing scaffolds in evolution, culture, and cognition. MIT Press, Cambridge, pp 23–55

    Google Scholar 

  • Griesemer JR (2016) Reproduction in complex life cycles: toward a developmental reaction norms perspective. Philos Sci. doi:10.1086/687865

    Google Scholar 

  • Hill DA, Siracusa MC, Abt MC et al (2012) Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18:538–546

    Article  Google Scholar 

  • Hooper LV (2009) Do symbiotic bacteria subvert host immunity? Nat Rev Micro 7:367–374

    Article  Google Scholar 

  • Huang L, Chen Q, Zhao Y et al (2014) Is elective cesarean section associated with a higher risk of asthma? A meta-analysis. J Asthma 52:16–25

    Article  Google Scholar 

  • Huneman P (2014) Individuality as a theoretical scheme. I. Formal and material concepts of individuality. Biol Theory 9:361–373

    Article  Google Scholar 

  • Hutter T, Gimbert C, Bouchard F, Lapointe F-J (2015) Being human is a gut feeling. Microbiome 3:9

    Article  Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor rorγt directs the differentiation program of proinflammatory il-17 + t helper cells. Cell 126:1121–1133

    Article  Google Scholar 

  • Jakobsson HE, Abrahamsson TR, Jenmalm MC et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut 63:559–566

    Article  Google Scholar 

  • Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol 125C:373–389

    Google Scholar 

  • Kernbauer E, Ding Y, Cadwell K (2014) An enteric virus can replace the beneficial function of commensal bacteria. Nature 516:94–98

    Google Scholar 

  • Kim K-A, Gu W, Lee I-A et al (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 7:e47713

    Article  Google Scholar 

  • Kim HY, Lee HJ, Chang Y-J et al (2014) Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med 20:54–61

    Article  Google Scholar 

  • Lee M-W, Odegaard JI, Mukundan L et al (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160:74–87

    Article  Google Scholar 

  • Lloyd EA (2017) Holobionts as units of selection: holobionts as interactors, reproducers, and manifestors of adaptation. In: Gississ S, Lamm E, Shavit A (eds) Landscapes of collectivity in the life sciences. MIT Press, Cambridge, MA

    Google Scholar 

  • Lochner M, Peduto L, Cherrier M et al (2008) In vivo equilibrium of proinflammatory IL-17 + and regulatory IL-10 + Foxp3 + RORγt + T cells. J Exp Med 205:1381–1393

    Article  Google Scholar 

  • Lochner M, Ohnmacht C, Presley L et al (2011) Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J Exp Med 208:125–134

    Article  Google Scholar 

  • Lopez CA, Miller BM, Rivera-Chávez F et al (2016) Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 353:1249–1253

    Article  Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge

    Google Scholar 

  • Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    Article  Google Scholar 

  • Matzinger P (2007) Friendly and dangerous signals: is the tissue in control? Nat Immunol 8:11–13

    Article  Google Scholar 

  • McCullers JA (2014) The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol 12:252–262

    Article  Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TC et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 110:3229–3236

    Article  Google Scholar 

  • Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3:292–303

    Article  Google Scholar 

  • Minelli A (2016) Scaffolded biology. Theory Biosci 135:163–173

    Article  Google Scholar 

  • Moeller AH, Caro-Quintero A, Mjungu D et al (2016) Cospeciation of gut microbiota with hominids. Science 353:380–382

    Article  Google Scholar 

  • Moran NA, Sloan DB (2015) The hologenome concept: helpful or hollow? PLoS Biol 13:e1002311

    Article  Google Scholar 

  • O’Malley MA (2016) Reproduction expanded: multigenerational and multilineal units of evolution. Phil Sci. doi:10.1086/687868 (in press)

    Google Scholar 

  • O’Malley MA, Dupré J (2007) Size doesn’t matter: towards a more inclusive philosophy of biology. Biol Philos 22:155–191

    Article  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: The neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Ohnmacht C, Park J-H, Cording S et al (2015) The microbiota regulates type 2 immunity through RORγt + T cells. Science 349:989–993

    Article  Google Scholar 

  • Osborne LC, Monticelli LA, Nice TJ et al (2014) Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345:578–582

    Article  Google Scholar 

  • Park JE, Barbul A (2004) Understanding the role of immune regulation in wound healing. Am J Surg 187:11S–16S

    Article  Google Scholar 

  • Pradeu T (2010) What is an organism? an immunological answer. Hist Philos Life Sci 32:247–267

    Google Scholar 

  • Pradeu T (2011) A mixed self: the role of symbiosis in development. Biol Theory 6:80–88

    Article  Google Scholar 

  • Pradeu T (2012) The limits of the self: immunology and biological identity. Oxford University Press, Oxford

    Book  Google Scholar 

  • Pradeu T (2016) Mutualistic viruses and the heteronomy of life. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci 59:80–88

    Article  Google Scholar 

  • Pradeu T, Carosella ED (2006) On the definition of a criterion of immunogenicity. Proc Natl Acad Sci 103:17858–17861

    Article  Google Scholar 

  • Pradeu T, Vivier E (2016) The discontinuity theory of immunity. Sci Immunol 1:aag0479

    Article  Google Scholar 

  • Prahalad P, Odegaard JI, Chawla A (2016) Type 2 immunity and metabolism. In: Gause WC, Artis D (eds) The Th2 type immune response in health and disease. Springer, New York, pp 155–169

    Chapter  Google Scholar 

  • Prioult G, Nagler-Anderson C (2005) Mucosal immunity and allergic responses: lack of regulation and/or lack of microbial stimulation? Immunol Rev 206:204–218

    Article  Google Scholar 

  • Qiu Y, Nguyen KD, Odegaard JI et al (2014) Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157:1292–1308

    Article  Google Scholar 

  • Romero R, Hassan SS, Gajer P et al (2014) The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2:4

    Article  Google Scholar 

  • Saenz SA, Taylor BC, Artis D (2008) Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 226:172–190

    Article  Google Scholar 

  • Sapp J (2016) The symbiotic self. Evol Biol. doi:10.1007/s11692-016-9378-3

    Google Scholar 

  • Saraswati S, Sitaraman R (2015) Aging and the human gut microbiota—from correlation to causality. Evol Genomic Microbiol 5:764

    Google Scholar 

  • Sela DA, Chapman J, Adeuya A et al (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci 105:18964–18969

    Article  Google Scholar 

  • Snyder CM, Cho KS, Bonnett EL et al (2008) Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional t cells. Immunity 29:650–659

    Article  Google Scholar 

  • Sober E (1991) Organisms, individuals, and units of selection. In: Tauber AI (ed) Organism and the origins of self. Springer, Berlin, pp 275–296

    Chapter  Google Scholar 

  • Sterelny K (2010) Minds: extended or scaffolded? Phenomenol Cogn Sci 9:465–481

    Article  Google Scholar 

  • Stewart FJ, Cavanaugh CM (2005) Symbiosis of Thioautotrophic bacteria with Riftia pachyptila. In: Overmann PDJ (ed) Molecular basis of symbiosis. Springer, Berlin, pp 197–225

    Google Scholar 

  • Sultan SE (2015) Organism and environment: ecological development, niche construction, and adaptation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Sutton C, Brereton C, Keogh B et al (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203:1685–1691

    Article  Google Scholar 

  • Tauber AI (2012) The biological notion of self and non-self. In: Zalta EN (ed) The stanford encyclopedia of philosophy (summer 2012 edition). http://plato.stanford.edu/archives/sum2012/entries/biologyself/#NewSysApp

  • Taxis TM, Wolff S, Gregg SJ et al (2015) The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Res 43:9600–9612

    Google Scholar 

  • Thavagnanam S, Fleming J, Bromley A et al (2008) A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy 38:629–633

    Article  Google Scholar 

  • Theis KR, Dheilly NM, Klassen JL et al (2016) Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1:e00028-16

    Article  Google Scholar 

  • Trinchieri G, Gerosa F (1996) Immunoregulation by interleukin-12. J Leukoc Biol 59:505–511

    Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M et al (2007) The human microbiome project. Nature 449:804–810

    Article  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  Google Scholar 

  • Turner JS (2000) The extended organism: the physiology of animal-built structures. Harvard University Press, Cambridge

    Google Scholar 

  • Virgin HW (2014) The virome in mammalian physiology and disease. Cell 157:142–150

    Article  Google Scholar 

  • Virgin HW, Wherry EJ, Ahmed R (2009) Redefining chronic viral infection. Cell 138:30–50

    Article  Google Scholar 

  • Walsh DM (2015) Organisms, agency, and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wimsatt WC (2001) Generative entrenchment and the developmental systems approach to evolutionary processes. In: Oyama S, Griffiths PE, Gray RD (eds) Cycles of contingency: developmental systems and evolution. MIT Press, Cambridge, pp 219–238

    Google Scholar 

  • Yoshida E, Sakurama H, Kiyohara M et al (2012) Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 22:361–368

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  Google Scholar 

  • Zivkovic AM, German JB, Lebrilla CB, Mills DA (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci 108:4653–4658

    Article  Google Scholar 

Download references

Acknowledgements

We thank Thomas Pradeu for bringing us together during the first ERC-IDEM workshop at Bordeaux and for the multiple rounds of extremely valuable comments and discussions. We also thank the three anonymous referees for their rapid, insightful, and impressively detailed comments. Special thanks to Layal Massara, ChiaHua Lin, Richard Lauer, Scott Gilbert, Peter Godfrey-Smith, and the participants of the First Bordeaux-San Sebastian Workshop on Philosophy of Biology for their useful comments, and to Valérie Jolivel, Weijen Liu, Bi-Huei Yang, and André Ariew for encouraging discussions at various stages of this manuscript. We thank Gregory Dupuy for editorial suggestions. Part of this work was inspired by discussions with James Griesemer after ISHPSSB 2013. All mistakes and errors are exclusively our own. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme—grant agreement No 637647—IDEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Chiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, L., Eberl, G. Microorganisms as scaffolds of host individuality: an eco-immunity account of the holobiont. Biol Philos 31, 819–837 (2016). https://doi.org/10.1007/s10539-016-9552-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-016-9552-0

Keywords

Navigation