Skip to main content
Log in

Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we discuss classical sufficient conditions to be satisfied from the grid transfer operators in order to obtain optimal two-grid and V-cycle multigrid methods utilizing the theory for Toeplitz matrices. We derive relaxed conditions that allow the construction of special grid transfer operators that are computationally less expensive while preserving optimality. This is particularly useful when the generating symbol of the system matrix has a zero of higher order, like in the case of higher order PDEs. These newly derived conditions allow the use of rank deficient grid transfer operators. In this case the use of a pre-relaxation iteration that is lacking the smoothing property is proposed. Combining these pre-relaxations with the new rank deficient grid transfer operators yields a substantial reduction of the convergence rate and of the computational cost at each iteration compared with the classical choice for Toeplitz matrices. The proposed strategy, i.e. a rank deficient grid transfer operator plus a specific pre-relaxation, is applied to linear systems whose system matrix is a Toeplitz matrix where the generating symbol is a high-order polynomial. The necessity of using high-order polynomials as generating symbols for the grid transfer operators usually destroys the Toeplitz structure on the coarser levels. Therefore, we discuss some effective and computational cheap coarsening strategies found in the literature. In particular, we present numerical results showing near-optimal behavior while keeping the Toeplitz structure on the coarser levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aricò, A., Donatelli, M.: A V-cycle multigrid for multilevel matrix algebras: proof of optimality. Numer. Math. 105, 511–547 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aricò, A., Donatelli, M., Serra-Capizzano, S.: V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26(1), 186–214 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakhvalov, N.S.: On the convergence of a relaxation method with natural constraints on the elliptic operator. USSR Comput. Math. Math. Phys. 6, 101–135 (1966)

    Article  Google Scholar 

  4. Bolten, M., Donatelli, M., Huckle, T.: Analysis of smoothed aggregation multigrid methods based on Toeplitz matrices. Preprint BUW-IMACM 13/10, Bergische Universität Wuppertal

  5. Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing 55, 379–393 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31(138), 333–390 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brandt, A.: Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with \(L_2\)-norm. SIAM J. Numer. Anal. 31, 1695–1730 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, R.H., Chang, Q.S., Sun, H.W.: Multigrid method for ill-conditioned symmetric Toeplitz systems. SIAM J. Sci. Comput. 19(2), 516–529 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng, L., Wang, H., Zhang, Z.: The solution of ill-conditioned symmetric Toeplitz systems via two-grid and wavelet methods. Comput. Math. Appl. 46(5–6), 793–804 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Donatelli, M.: An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices. Numer. Linear Algebra Appl. 17, 179–197 (2010)

    MATH  MathSciNet  Google Scholar 

  12. Fedorenko, R.P.: The speed of convergence of one iterative process. USSR Compt. Math. Math. Phys. 4(3), 227–235 (1964)

    Article  Google Scholar 

  13. Fiorentino, G., Serra, S.: Multigrid methods for Toeplitz matrices. Calcolo 28, 238–305 (1991)

    Article  MathSciNet  Google Scholar 

  14. Fiorentino, G., Serra, S.: Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions. SIAM J. Sci. Comput. 17(5), 1068–1081 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hackbusch, W.: Convergence of multi-grid iterations applied to difference equations. Math. Comp. 34, 425–440 (1980)

    MATH  MathSciNet  Google Scholar 

  16. Hackbusch, W.: On the convergence of multi-grid iterations. Beiträge Numer. Math. 9, 213–239 (1981)

    MATH  Google Scholar 

  17. Hackbusch, W.: Multi-grid convergence theory. In: Hackbusch, W., Trottenberg, U. (eds.) Multigrid methods. Lecture Notes in Mathematics, vol. 960, pp. 177–219. Springer, Berlin (1982)

    Chapter  Google Scholar 

  18. Hemker, P.W.: On the order of prolongations and restrictions in multigrid procedures. J. Comput. Appl. Math. 32, 423–429 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Huckle, T., Staudacher, J.: Multigrid preconditioning and Toeplitz matrices. Electron. Trans. Numer. Anal. 13, 82–105 (2002)

    MathSciNet  Google Scholar 

  20. McCormick, S.F.: Multigrid methods for variational problems: general theory for the V-cycle. SIAM J. Numer. Anal. 22(4), 634–643 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. McCormick, S.F., Ruge, J.W.: Multigrid methods for variational problems. SIAM J. Numer. Anal. 19(5), 924–929 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Napov, A., Notay, Y.: Smoothing factor, order of prolongation and actual multigrid convergence. Numer. Math. 118, 457–483 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: McCormick, S.F. (ed.) Multigrid methods, Frontiers Appl. Math., vol. 3, pp. 73–130. SIAM, Philadelphia (1987)

  24. Serra, S.: Multi-iterative methods. Comput. Math. Appl. 26(4), 65–87 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Serra-Capizzano, S.: Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs matrix sequences. Numer. Math. 92, 433–465 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Serra-Capizzano, S., Tablino-Possio, C.: Multigrid methods for multilevel circulant matrices. SIAM J. Sci. Comput. 26(1), 55–85 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  28. Tyrtyshnikov, E.: A unifying approach to some old and new theorems on preconditioning and clustering. Linear Algebra Appl. 232, 1–43 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wienands, R., Joppich, W.: Practical Fourier analysis for multigrid methods, Numerical Insights, vol. 4. Chapman & Hall/CRC, Boca Raton (2005)

    Google Scholar 

  31. Yavneh, I.: Coarse-grid correction for nonelliptic and singular pertubation problems. SIAM J. Sci. Comput. 19(5), 1682–1699 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Bolten.

Additional information

Communicated by Hans Petter Langtangen.

The work of C. Kravvaritis was supported by the Alexander von Humboldt Foundation, Bonn, Germany.

The work of M. Donatelli was partly supported by PRIN 2012 N. 2012MTE38N.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolten, M., Donatelli, M., Huckle, T. et al. Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices. Bit Numer Math 55, 341–366 (2015). https://doi.org/10.1007/s10543-014-0512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0512-2

Keywords

Mathematics Subject Classification

Navigation