Skip to main content
Log in

Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microfluidic bioreactors fabricated from highly gas-permeable poly(dimethylsiloxane) (PDMS) materials have been observed, somewhat unexpectedly, to give rise to heterogeneous long term responses along the length of a perfused mammalian cell culture channel, reminiscent of physiologic tissue zonation that arises at least in part due to oxygen gradients. To develop a more quantitative understanding and enable better control of the physical-chemical mechanisms underlying cell biological events in such PDMS reactors, dissolved oxygen concentrations in the channel system were quantified in real time using fluorescence intensity and lifetime imaging of an oxygen sensitive dye, ruthenium tris(2,2’-dipyridyl) dichloride hexahydrate (RTDP). The data indicate that despite oxygen diffusion through PDMS, uptake of oxygen by cells inside the perfused PDMS microchannels induces an axial oxygen concentration gradient, with lower levels recorded in downstream regions. The oxygen concentration gradient generated by a balance of cellular uptake, convective transport by media flow, and permeation through PDMS in our devices ranged from 0.0003 (mg/l)/mm to 0.7 (mg/l)/mm. The existence of such steep gradients induced by cellular uptake can have important biological consequences. Results are consistent with our mathematical model and give insight into the conditions under which flux of oxygen through PDMS into the microchannels will or will not contribute significantly to oxygen delivery to cells and also provide a design tool to manipulate and control oxygen for cell culture and device engineering. The combination of computerized microfluidics, in situ oxygen sensing, and mathematical models opens new windows for microphysiologic studies utilizing oxygen gradients and low oxygen tensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • J.W. Allen and S.N. Bhatia, Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol. Bioeng. 82, 253–262 (2003).

    Article  Google Scholar 

  • J.W. Allen, S.R. Khetani, and S.N. Bhatia, In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol. Sci. 84: 110–119 (2005).

    Article  Google Scholar 

  • S. Andreescu, O.A. Sadik, D.W. McGee, and S. Suye, Autonomous multielectrode system for monitoring the interactions of isoflavonoids with lung cancer cells. Anal. Chem. 76, 2321–2330 (2004).

    Article  Google Scholar 

  • R. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. Neil, A. deMello, and P. French, Time-resolved fluorescence imaging of solvent interactions in microfluidic devices. Opt. Express. 13, 6275–6285 (2005).

    Article  Google Scholar 

  • D.A. Chang-Yen and B.K. Gale, An integrated optical oxygen sensor fabricated using rapid-prototyping techniques. Lab Chip. 3, 297–301 (2003).

    Article  Google Scholar 

  • S.G. Charati and S.A. Stern, Diffusion of gases in silicone polymers: Molecular dynamics simulations. Macromol. 31, 5529–5535 (1998).

    Article  Google Scholar 

  • M. Csete, Oxygen in the cultivation of stem cells. Ann. N. Y. Acad. Sci. 1049, 1–8 (2005).

    Article  Google Scholar 

  • R.R. Deshpande and E. Heinzle, On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors. Biotechnol. Lett. 26, 763–767 (2004).

    Article  Google Scholar 

  • J.W. Dobrucki, Interaction of oxygen-sensitive luminescent probes Ru(phen)(3)(2+) and Ru(bipy)(3)(2+) with animal and plant cells in vitro. Mechanism of phototoxicity and conditions for non-invasive oxygen measurements. J. Photochem. Photobiol. B. 65, 136–144 (2001).

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, Schueller OJA, and G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  Google Scholar 

  • B.R. Duling, Microvascular responses to alterations in oxygen tension. Circ. Res. 31, 481–489 (1972).

    Google Scholar 

  • T. Ezashi, P. Das, and R.M. Roberts, Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl. Acad. Sci. U S A 102, 4783–4788 (2005).

    Article  Google Scholar 

  • R.J. Fleischaker and A.J. Sinskey, Oxygen demand and supply in cell culture. Appl. Microbiol. Biotechnol. 12, 193 (1981).

    Article  Google Scholar 

  • N. Futai, W. Gu, and S. Takayama, Rapid prototyping of microstructures with bell-shaped cross-sections and its application to deformation-based microfluidic valves. Adv. Mater. 16, 1320–1323 (2004).

    Article  Google Scholar 

  • N. Futai, W. Gu, J.W. Song, and S. Takayama, Handheld recirculation system and customized media for microfluidic cell culture. Lab Chip. 6, 149–154 (2006).

    Article  Google Scholar 

  • H.C. Gerritsen, R. Sanders, A. Draaijer, and Y.K. Levine, Flourescence lifetime imaging of oxygen in living Cells. J. Flourescence. 7, 11–16 (1997).

    Google Scholar 

  • W. Gu, X. Zhu, N. Futai, B.S. Cho, and S. Takayama, Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc. Natl. Acad. Sci. USA 101, 15861–15866 (2004).

    Article  Google Scholar 

  • Y.S. Heo, L.M. Cabrera, J.W. Song, N. Futai, Y-C Tung, G.D. Smith, and S. Takayama, Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Submitted to Anal. Chem. (2006).

  • E.Y. Hwang, D. Pappas, A.S. Jeevarajan, and M.M. Anderson, Evaluation of the paratrend multi-analyte sensor for potential utilization in long-duration automated cell culture monitoring. Biomed. Microdevices. 6, 241–249 (2004).

    Article  Google Scholar 

  • G.T. John, I. Klimant, C. Wittmann, and E. Heinzle, Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol. Bioeng. 81, 829–836 (2003).

    Article  Google Scholar 

  • E. Leclerc, B. David, L. Griscom, B. Lepioufle, T. Fujii, P. Layrolle, and C. Legallaisa, Study of osteoblastic cells in a microfluidic environment. Biomaterials. 27, 586–595 (2006).

    Article  Google Scholar 

  • E. Leclerc, Y. Sakai, and T. Fujii, Cell culture in 3-Dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed. Microdevices. 5, 109 (2003).

    Article  Google Scholar 

  • E. Leclerc, Y. Sakai, and T. Fujii, Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Biotechnol. Prog. 20, 750–755 (2004).

    Article  Google Scholar 

  • J. Malda, J. Rouwkema, D.E. Martens, E.P. Le Comte, F.K. Kooy, J. Tramper, C.A. van Blitterswijk, and J. Riesle, Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol. Bioeng. 86, 9–18 (2004).

    Article  Google Scholar 

  • K. Mehta and J.J. Linderman, Model-based analysis and design of a microchannel reactor for tissue engineering. Biotechnol. Bioeng. 94, 596–609 (2006).

    Article  Google Scholar 

  • T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, and I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Polym. Sci. Part B-Polym. Phys. 38, 415–434 (2000).

    Article  Google Scholar 

  • S.M. Mitrovski and R.G. Nuzzo, An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients. Lab Chip. 5, 634–645 (2005).

    Google Scholar 

  • G.F. Muschler, C. Nakamoto, and L.G. Griffith, Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am. 86-A, 1541–1558 (2004).

    Google Scholar 

  • J. Park, T. Bansal, M. Pinelis, and M.M. Maharbiz, A microsystem for sensing and patterning oxidative microgradients during cell culture. Lab Chip. 6, 611–622 (2006).

    Article  Google Scholar 

  • T.H. Park and M.L. Shuler, Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19, 243–253 (2003).

    Article  Google Scholar 

  • J.C. Pfau, J.C. Schneider, A.J. Archer, J. Sentissi, F.J. Leyva, and J. Cramton, Environmental oxygen tension affects phenotype in cultured bone marrow-derived macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L354–L362 (2004).

    Article  Google Scholar 

  • R.N. Pittman and B.R. Duling, Measurement of percent oxyhemoglobin in the microvasculature. J. Appl. Physiol. 38, 321–327 (1975).

    Google Scholar 

  • P. Roy, H. Baskaran, A.W. Tilles, M.L. Yarmush, and M. Toner, Analysis of oxygen transport to hepatocytes in a flat-plate microchannel bioreactor. Ann. Biomed. Eng. 29, 947–955 (2001).

    Article  Google Scholar 

  • A. Seiyama, S. Tanaka, H. Kosaka, and T. Shiga, O2 transfer from single microvessels to acinar cells in secretin-stimulated pancreas of rat. Am. J. Physiol. 270, H1704–H1711 (1996).

    Google Scholar 

  • H. Shiku, T. Saito, C-C Wu, T. Yasukawa, M. Yokoo, H. Abe, T. Matsue, and H. Yamada, Oxygen permeability of surface-modified poly(dimethylsiloxane) characterized by scanning electrochemical microscopy. Chem. Lett. 35, 234 (2006).

    Article  Google Scholar 

  • A. Sin, K.C. Chin, M.F. Jamil, Y. Kostov, G. Rao, and M.L. Shuler, The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20, 338–345 (2004).

    Article  Google Scholar 

  • J.W. Song, W. Gu, N. Futai, K.A. Warner, J.E. Nor, and S. Takayama, Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 77, 3993–3999 (2005).

    Article  Google Scholar 

  • D. Sud, G. Mehta, K. Mehta, J. Linderman, S. Takayama, and M.-A. Mycek, Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture, J. Biomed. Opt. 11(5), 050504 (Published on the web on Sep. 28) (2006a).

  • D. Sud, W. Zhong, D.G. Beer, and M.A. Mycek, Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models. Opt. Express. 14, 4412–4426 (2006b).

    Article  Google Scholar 

  • D.P. Swain and R.N. Pittman, Oxygen exchange in the microcirculation of hamster retractor muscle. Am. J. Physiol. 256, H247–H255 (1989).

    Google Scholar 

  • I.R. Sweet, G. Khalil, A.R. Wallen, M. Steedman, K.A. Schenkman, J.A. Reems, S.E. Kahn, and J.B. Callis, Continuous measurement of oxygen consumption by pancreatic islets. Diabetes Technol. Ther. 4, 661–672 (2002).

    Article  Google Scholar 

  • N. Szita, P. Boccazzi, Z. Zhang, P. Boyle, A.J. Sinskey, and K.F. Jensen, Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip. 5, 819–826 (2005).

    Article  Google Scholar 

  • L. Tolosa, Y. Kostov, P. Harms, and G. Rao, Noninvasive measurement of dissolved oxygen in shake flasks. Biotechnol. Bioeng. 80, 594–597 (2002).

    Article  Google Scholar 

  • A.G. Tsai, P.C. Johnson, and M. Intaglietta, Oxygen gradients in the microcirculation. Physiol. Rev. 83, 933–963 (2003).

    Google Scholar 

  • P. Urayama, W. Zhong, J.A. Beamish, F.K. Minn, R.D. Sloboda, K.H. Dragnev, E. Dmitrovsky, and M.A. Mycek, A UV-Visible-NIR fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution. Appl. Phys. B: Lasers and Optics. 76, 483 (2003).

    Google Scholar 

  • V. Van Merris, M. Lenjou, D. Hoeben, G. Nijs, D. Van Bockstaele, and C. Burvenich, Culture of bovine bone marrow progenitor cells in vitro. Vet. Q. 23, 170–175 (2001).

    Google Scholar 

  • A.P. Vollmer, R.F. Probstein, R. Gilbert, and T. Thorsen, Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Lab Chip. 5, 1059–1066 (2005).

    Article  Google Scholar 

  • G.M. Walker, M.S. Ozers, and D.J. Beebe, Insect cell culture in microfluidic channels. Biomed. Microdevices. 4, 161 (2002).

    Article  Google Scholar 

  • Y.S. Yeh, W.J. James, and H. Yasuda, Polymerization of para-xylylene derivatives.6. Morphology of parylene-N and parylene-C films investigated by gas-transport characteristics. J. Polym. Sci. Part B-Polym. Phys. 28, 545–568 (1990).

    Article  Google Scholar 

  • Z. Yun, Q. Lin, and A.J. Giaccia, Adaptive myogenesis under hypoxia. Mol. Cell. Biol. 25, 3040–3055 (2005).

    Article  Google Scholar 

  • A. Zanzotto, N. Szita, P. Boccazzi, P. Lessard, A.J. Sinskey, and K.F. Jensen, Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol. Bioeng. 87, 243–254 (2004).

    Article  Google Scholar 

  • W. Zhong, P. Urayama, M-A Mycek, Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing. J. Phys. D: Appl. Phys. 36, 1689 (2003).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Brian Johnson and Prof. Mark Burns, Department of Chemical Engineering, Univ. of Michigan for use of clean room facilities, Kenneth Chomistek, Department of Chemical Engineering, Univ. of Michigan for parylene coating on PDMS. This material is based upon work supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number DAAD19-03-1-0168 and the National Science Foundation (BES-0238625).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer J. Linderman or Shuichi Takayama.

Electronic supplementary material

Fig. S1

Braille pump (gray) and valve (valves down, white) positions during fibronectin adsorption

Fig. S2

Flow direction (solid green arrows) and valve (valve-up: gray with black border, valve-down: white) positions during cell seeding

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, G., Mehta, K., Sud, D. et al. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomed Microdevices 9, 123–134 (2007). https://doi.org/10.1007/s10544-006-9005-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9005-7

Keywords

Navigation