Skip to main content

Advertisement

Log in

Investigation of osteogenic activity of primary rabbit periosteal cells stimulated by multi-axial tensile strain

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Periosteum–derived cells was indicated to respond to mechanical force and have stem cell potential capable of differentiating into multiple tissue. Investigation of osteogenic activity under mechanical stimulation is important to understand the therapeutic conditions of fracture healing. In this work, a cell culture platform was developed for respectively providing isotropic and anisotropic axial strain. Primary rabbit periosteal cells were isolated and cultured in the chamber. Multi-axial tensile strain was received and osteogenic activity was investigated by mRNA expressions of CBFA1 and OPN. The highest mRNA expression was found in moderate strain (5-8%) under anisotropic axial strain. These results provided important foundation for further in vivo studies and development of tailor-made stretching rehabilitation equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • C. Banerjee, L.R. McCabe, J.Y. Choi, S.W. Hiebert, J.L. Stein, G.S. Stein, J.B. Lian, Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J. Cell. Biochem. 66, 1–8 (1997)

    Article  Google Scholar 

  • G. Bartalena, R. Grieder, R.I. Sharma, T. Zambelli, R. Muff, J.G. Snedeker, A novel method for assessing adherent single-cell stiffness in tension: Design and testing of a substrate-based live cell functional imaging device. Biomed. Microdevices 13, 291–301 (2011)

    Article  Google Scholar 

  • M. Bu, T. Melvin, G. Ensell, J.S. Wilkinson, A.G.R. Evans, Design and theoretical evaluation of a novel microfluidic device to be used for PCR. J. Micromech. Microeng. 13, S125–S130 (2003)

    Article  Google Scholar 

  • C. De Bari, F. Dell'Accio, F.P. Luyten, Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 44, 85–95 (2001)

    Article  Google Scholar 

  • C. De Bari, F. Dell'Accio, J. Vanlauwe, J. Eyckmans, I.M. Khan, C.W. Archer, E.A. Jones, D. McGonagle, T.A. Mitsiadis, C. Pitzalis, F.P. Luyten, Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 54, 1209–1221 (2006)

    Article  Google Scholar 

  • D.T. Denhardt, M. Noda, Osteopontin expression and function: Role in bone remodeling. J. Cell. Biochem. Suppl. 30-31, 92–102 (1998)

    Article  Google Scholar 

  • X. Gao, X. Zhang, H. Tong, B. Lin, J. Qin, A simple elastic membrane-based microfluidic for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis 32, 3431–3436 (2011)

    Article  Google Scholar 

  • W.H. Grover, R.H.C. Ivester, E.C. Jensen, R.A. Mathies, Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6, 623–631 (2006)

    Article  Google Scholar 

  • H. Harada, S. Tagashira, M. Fujiwara, S. Ogawa, T. Katsumata, A. Yamaguchi, T. Komori, M. Nakatsuka, Cbfa1 isoforms exert functional differences in osteoblast differentiation. J. Biol. Chem. 274, 6972–6978 (1999)

    Article  Google Scholar 

  • M.D. Hoffman, D.S. Benoit, Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Biomaterials 52, 426–440 (2015)

    Article  Google Scholar 

  • M. Ishijima, S.R. Rittling, T. Yamashita, K. Tsuji, H. Kurosawa, A. Nifuji, D.T. Denhardt, M. Noda, Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J. Exp. Med. 193, 399–404 (2001)

    Article  Google Scholar 

  • T. Kanno, T. Takahashi, W. Ariyoshi, T. Tsujisawa, M. Haga, T. Nishihara, Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: Implications for distraction osteogenesis. J. Oral Maxillofacial Surg. 63, 499–504 (2005)

    Article  Google Scholar 

  • G. Karsenty, Role of Cbfa1 in osteoblast differentiation and function. Semin. Cell Dev. Biol. 11, 343–346 (2000)

    Article  Google Scholar 

  • B. Kern, J. Shen, M. Starbuck, G. Karsenty, Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J. Biol. Chem. 276, 7101–7107 (2001)

    Article  Google Scholar 

  • Y.C. Kim, J.H. Kang, S.J. Park, E.S. Yoon, J.K. Park, Microfluidic biomechanical device for compressive cell stimulation and lysis. Sensors Actuators B Chem. 128, 108–116 (2007)

    Article  Google Scholar 

  • Y.C. Kim, S.J. Park, J.K. Park, Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst 113, 1432–1439 (2008)

    Article  Google Scholar 

  • I.S. Kim, Y.M. Song, T.H. Cho, J.Y. Kim, F.E. Weber, S.J. Hwang, Synergistic action of static stretching and BMP-2 stimulation in the osteoblast differentiation of C2C12 myoblasts. J. Biomech. 42, 2721–2727 (2009)

    Article  Google Scholar 

  • H. Kobayashi, Y. Gao, C. Ueta, A. Yamaguchi, T. Komori, Multilineage differentiation of Cbfa1-deficient calvarial cells in vitro. Biochem. Biophys. Res. Commun. 273, 630–636 (2000)

    Article  Google Scholar 

  • J. Kong, L. Jiang, X. Su, J. Qin, Y. Du, B. Lin, Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab Chip 9, 1541–1547 (2009)

    Article  Google Scholar 

  • Y. Koshihara, M. Kawamura, S. Endo, C. Tsutsumi, H. Kodama, H. Oda, S. Higaki, Establishment of human osteoblastic cells derived from periosteum in culture. In Vitro Cell Dev. Biol. 25, 37–43 (1989)

    Article  Google Scholar 

  • G.D. Krischak, A. Janousek, S. Wolf, P. Augat, L. Kinzi, L.E. Claes, Effects of one-plane and two-plane external fixation on sheep osteotomy healing and complications. Clin. Biomech. 17, 470–476 (2002)

    Article  Google Scholar 

  • W.J. Landis, R. Jacquet, E. Lowder, M. Enjo, Y. Wada, N. Isogai, Tissue engineering models of human digits: Effect of periosteum on growth plate cartilage development. Cells Tissues Organs 189, 241–244 (2009)

    Article  Google Scholar 

  • K.F. Lei, Microfluidic systems for diagnostic applications: A review. JALA 17, 330–347 (2012)

    Google Scholar 

  • K.F. Lei, K.H. Chen, Y.C. Chang, Protein binding reaction enhanced by bi-directional flow driven by on-chip thermopneumatic actuator. Biomed. Microdevices 16, 325–332 (2014)

    Article  Google Scholar 

  • X. Liu, W. Chen, Y. Zhou, K. Tang, J. Zhang, Mechanical tension promotes the osteogenic differentiation of rat tendon-derived stem cell through the Wnt5a/Wnt5b/JNK signaling pathway. Cell. Physiol. Biochem. 36, 517–530 (2015)

    Article  Google Scholar 

  • B. Mckibbin, The biology of fracture healing in long bones. J. Bone Joint Surg. 60B, 150–162 (1978)

    Google Scholar 

  • M. Morinobu, M. Ishijima, S.R. Rittling, K. Tsuji, H. Yamamoto, A. Nifuji, D.T. Denhardt, M. Noda, Osteopontin expression in osteoblasts and osteocytes during bond formation under mechanical stress in the calvarial suture in vivo. J. Bone Miner. Res. 18, 1706–1715 (2003)

    Article  Google Scholar 

  • H. Nakahara, V.M. Goldberg, A.I. Caplan, Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res. 9, 465–476 (1991a)

    Article  Google Scholar 

  • H. Nakahara, J.E. Dennis, S.P. Bruder, S.E. Haynesworth, D.P. Lennon, A.I. Caplan, In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp. Cell Res. 195, 492–503 (1991b)

    Article  Google Scholar 

  • H.C. Pape, P.V. Giannoudis, K. Grimme, M. van Griensven, C. Krettek, Effects of intramedullary femoral fracture fixation: What is the impact of experimental studies in regards to the clinical knowledge? Shock 18, 291–300 (2002)

    Article  Google Scholar 

  • S.M. Perren, Evolution of the internal fixation of long bone fractures. J. Bone Joint Surg. 84B, 1093–1110 (2002)

    Article  Google Scholar 

  • M. Prince, C. Banerjee, A. Javed, J. Green, J.B. Lian, G.S. Stein, P.V.N. Bodine, B.S. Komm, Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J. Cell. Biochem. 80, 424–440 (2001)

    Article  Google Scholar 

  • M. Samee, S. Kasugai, H. Kondo, K. Ohya, H. Shimokawa, S. Kuroda, Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J. Pharmacol. Sci. 108, 18–31 (2008)

    Article  Google Scholar 

  • M. Sato, E. Morii, T. Komori, H. Kawahata, M. Sugimoto, K. Terai, et al., Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene 17, 1517–1525 (1998)

    Article  Google Scholar 

  • N. Shimizu, Y. Ozawa, M. Yamaguchi, T. Goseki, K. Ohzeki, Y. Abiko, Induction of COX-2 expression by mechanical tension force in human periodontal ligament cells. J. Periodontol. 69, 670–677 (1998)

    Article  Google Scholar 

  • Z. Sun, B.C. Tee, Molecular variations related to the regional differences in periosteal growth at the mandibular ramus. Bone Biol. 294, 79–87 (2011)

    Google Scholar 

  • N. Suzuki, Y. Yoshimura, Y. Deyama, K. Suzuki, Y. Kitagawa, Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. Int. J. Mol. Med 21, 291–296 (2008)

    Google Scholar 

  • L. Tang, Z. Lin, Y.M. Li, Effects of different magnitudes of mechanical strain on osteoblasts in vitro. Biochem. Bioph. Res. Co. 344, 122–128 (2006)

    Article  Google Scholar 

  • T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298, 580–584 (2002)

    Article  Google Scholar 

  • E. Vogelin, N.F. Jones, J.I. Huang, J.H. Brekke, J.R. Lieberman, Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. J. Bone Joint Surg. Am. 87, 1323–1331 (2005)

    Google Scholar 

  • Z.S. Xiao, T.K. Hinson, L.D. Quarles, Cbfa1 isoform overexpression upregulates osteocalcin gene expression in non-osteoblastic and pre-osteoblastic cells. J. Cell. Biochem. 74, 596–605 (1999)

    Article  Google Scholar 

  • T. Yamaji, K. Ando, S. Wolf, P. Augat, L. Claes, The effect of micromovement on callus formation. J. Orthop. Sci. 6, 571–575 (2001)

    Article  Google Scholar 

  • T. Yamate, H. Mocharla, Y. Taguchi, J.U. Igietseme, S.C. Manolagas, E. Abe, Osteopontin expression by osteoclast and osteoblast progenitors in the murine bone marrow: Demonstration of its requirement for osteoclastogenesis and its increase after ovariectomy. Endocrinology 138, 3047–3055 (1997)

    Google Scholar 

  • P.G. Ziros, A.P. Gil, T. Georgakopoulos, I. Habeos, D. Kletsas, E.K. Basdra, A.G. Papavassiliou, The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J. Biol. Chem. 277, 23934–23941 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Chang Gung Memorial Hospital, Linkou branch, Taiwan (Project no. BMRPC05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kin Fong Lei or Alvin Chao-Yu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, CH., Liu, JL., Chang, CH. et al. Investigation of osteogenic activity of primary rabbit periosteal cells stimulated by multi-axial tensile strain. Biomed Microdevices 19, 13 (2017). https://doi.org/10.1007/s10544-017-0154-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0154-7

Keywords

Navigation