Skip to main content
Log in

Including the Drag Effects of Canopies: Real Case Large-Eddy Simulation Studies

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We use the mesoscale meteorological model Meso-NH, taking the drag force of trees into account under stable, unstable and neutral conditions in a real case study. Large-eddy simulations (LES) are carried out for real orography, using a regional forcing model and including the energy and water fluxes between the surface (mostly grass with some hedges of trees) and the atmosphere calculated using a state-of-the-art soil-vegetation-atmosphere-transfer model. The formulation of the drag approach consists of adding drag terms to the momentum equation and subgrid turbulent kinetic energy dissipation, as a function of the foliage density. Its implementation in Meso-NH is validated using Advanced Regional Prediction System simulation results and measurements from Shaw and Schumann (Boundary-Layer Meteorol, 61(1):47–64, 1992). The simulation shows that the Meso-NH model successfully reproduces the flow within and above homogeneous covers. Then, real case studies are used in order to investigate the three different boundary layers in a LES configuration (resolution down to 2 m) over the “Lannemezan 2005” experimental campaign. Thus, we show that the model is able to reproduce realistic flows in these particular cases and confirm that the drag force approach is more efficient than the classical roughness approach in describing the flow in the presence of vegetation at these resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumond P, Gauvreau B, Lac C, Masson V, Bérengier M (2012) Numerical predictions for environmental acoustics: simulation of atmospheric fields and integration in a propagation model. Invited paper, Proc Acoustics 2012 (joint SFA/IOA international congress), Nantes (F), 23–27 April

  • Bohrer G, Katul GG, Walko R, Avissar R (2009) Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Boundary-Layer Meteorol 132: 351–382

    Article  Google Scholar 

  • Bougeault P, Lacarrere P (1989) Parameterization of orography-induced turbulence in a mesobetascale model. Mon Weather Rev 117: 1872–1890

    Article  Google Scholar 

  • Büttner G, Feranec J, Jaffrain G, Mari L, Maucha G, Soukup T (2004) The CORINE land cover 2000 project. EARSeL eProc 3(3): 331–346

    Google Scholar 

  • Cassiani M, Katul G, Albertson J (2008) The effects of canopy leaf area index on airflow across forest edges: large-eddy simulation and analytical results. Boundary-Layer Meteorol 126(3): 433–460

    Article  Google Scholar 

  • Chamecki M, Meneveau C, Parlange M (2009) Large eddy simulation of pollen transport in the atmospheric boundary layer. J Aerosol Sci 40(3): 241–255

    Article  Google Scholar 

  • Chow F, Weigel A, Street R, Rotach M, Xue M (2006) High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments. J Appl Meteorol Climatol 45(1): 63–86

    Article  Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger JL (2000a) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126: 1–30

    Article  Google Scholar 

  • Cuxart J, Yague C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler M, Infante C, Buenestado P et al (2000b) Stable atmospheric boundary-layer experiment in Spain (SABLES 98): a report. Boundary-Layer Meteorol 96(3): 337–370

    Article  Google Scholar 

  • Deardorff J (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18(4): 495–527

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10: 249–270

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008a) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126(1): 51–71

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008b) Impact of forest edge shape on tree stability: a large-eddy simulation study. Forestry 81(3): 299

    Article  Google Scholar 

  • Dupont S, Brunet Y, Finnigan J (2008) Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Q J R Meteorol Soc 134(636): 1911–1929

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. J Fluid Mech 32(1): 519–571

    Article  Google Scholar 

  • Irvine M, Gardiner B, Hill M (1997) The evolution of turbulence across a forest edge. Boundary-Layer Meteorol 84(3): 467–496

    Article  Google Scholar 

  • Jiménez M, Cuxart J (2005) Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: range of applicability. Boundary-Layer Meteorol 115(2): 241–261

    Article  Google Scholar 

  • Junker F, Gauvreau B, Bérengier M, Cremezi-Charlet C, Blanc-Benon P, Cotté B, Ecotière D (2006) Classification of relative influence of physical parameters for long range acoustic propagation. Invited paper to Internoise 2006, Honolulu (EUA), December

  • Kanda M, Hino M (1994) Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Boundary-Layer Meteorol 68(3): 237–257

    Article  Google Scholar 

  • Lafore J, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Hereil P, Mascart P, Pinty J, Redelsperger J, Richard E, de Arellano JVG (1998) The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann Geophys 16: 90–109

    Article  Google Scholar 

  • Masson V, Seity Y (2009) Including atmospheric layers in vegetation and urban offline surface schemes. J Appl Meteorol Climatol 48: 1377–1397

    Article  Google Scholar 

  • Mayhead G (1973) Some drag coefficients for British forest trees derived from wind tunnel studies. Agric Meteorol 12: 123–130

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117(3): 536–549

    Article  Google Scholar 

  • Otte T, Lacser A, Dupont S, Ching J (2004) Implementation of an urban canopy parameterization in a mesoscale meteorological model. J Appl Meteorol 43(11): 1648–1665

    Article  Google Scholar 

  • Patton E, Shaw R, Judd M, Raupach M (1998) Large-eddy simulation of windbreak flow. Boundary-Layer Meteorol 87(2): 275–307

    Article  Google Scholar 

  • Patton E, Sullivan P, Davis K (2003) The influence of a forest canopy on top-down and bottom-up diffusion in the planetary boundary layer. Q J R Meteorol Soc 129(590): 1415–1434

    Article  Google Scholar 

  • Pimont F, Dupuy J, Scarella G, Caraglio Y, Morvan D (2006) Effects of small scale heterogeneity of vegetation on radiative transfer in forest fire. For Ecol Manag 234: S88

    Article  Google Scholar 

  • Poggi D, Katul G (2010) Evaluation of the turbulent kinetic energy dissipation rate inside canopies by zero- and level-crossing density methods. Boundary-Layer Meteorol 136: 1–15

    Article  Google Scholar 

  • Poggi D, Katul G, Albertson J (2004) Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol 111(3): 589–614

    Article  Google Scholar 

  • Shaw R, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61(1): 47–64

    Article  Google Scholar 

  • Shen S, Leclerc M (1997) Modelling the turbulence structure in the canopy layer. Agric For Meteorol 87(1): 3–25

    Article  Google Scholar 

  • Su H, Shaw R, Paw K, Moeng C, Sullivan P (1998) Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol 88(3): 363–397

    Article  Google Scholar 

  • Tomas S, Masson V (2006) A parameterization of third-order moments for the dry convective boundary layer. Boundary-Layer Meteorol 120(3): 437–454

    Article  Google Scholar 

  • Weigel A, Chow F, Rotach M, Street R, Xue M (2006) High-resolution large-eddy simulations of flow in a steep Alpine valley. Part II: Flow structure and heat budgets. J Appl Meteorol Climatol 45(1): 87–107

    Article  Google Scholar 

  • Weigel A, Chow F, Rotach M (2007) On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Boundary-Layer Meteorol 123(1): 177–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Aumond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aumond, P., Masson, V., Lac, C. et al. Including the Drag Effects of Canopies: Real Case Large-Eddy Simulation Studies. Boundary-Layer Meteorol 146, 65–80 (2013). https://doi.org/10.1007/s10546-012-9758-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9758-x

Keywords

Navigation