Skip to main content
Log in

Decrease in Propagation of Interictal Epileptiform Activity After Introduction of Levetiracetam Visualized with Electric Source Imaging

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Different neuroimaging techniques (fMRI, spectroscopy, PET) are being used to evaluate candidate drugs in pharmacological development. In patients with epilepsy fast propagation of the epileptiform activity between different brain areas occurs. Electric Source Imaging (ESI), in contrast to the aforementioned techniques, has a millisecond time resolution, allowing visualization of this fast propagation. The purpose of the current project was to use ESI to investigate whether introduction of an antiepileptic drug (levetiracetam, LEV) would change the propagation patterns of the interictal epileptiform activity. Thirty patients with epilepsy were subject to an EEG recording before (pre-LEV) and after (in-LEV) introduction of LEV. Interictal spikes with similar topographic distribution were averaged within each subject, and a distributed source model was used to localize the EEG sources of the epileptiform activity. The temporal development of the activity within 20 regions of interest (ROIs) was determined, and source propagation between different regions was compared between the pre-LEV and in-LEV recordings. Patients with epileptic seizures showed propagation in 22/24 identified spike types in the pre-LEV recordings. In the in-LEV recordings only 7/15 spike types showed propagation, and six of these seven propagating spikes were recorded in patients with poor effect of treatment. Also in patients without seizures LEV tended to suppress propagation. We conclude that the observed suppression of source propagation can be considered as an indicator of effective antiepileptic treatment. ESI might thus become a useful tool in the early clinical evaluation of new candidate drugs in pharmacological development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alarcon G, Guy CN et al (1994) Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neurol Neurosurg Psychiatry 57:435–449

    Article  CAS  PubMed  Google Scholar 

  • Alarcon G, Seoane JJG et al (1997) Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain 120:259–282

    Article  Google Scholar 

  • Bikson M, Fox JE et al (2003) Neuronal aggregate formation underlies spatiotemporal dynamics of nonsynaptic seizure initiation. J Neurophysiol 4(89):2330–2333

    Google Scholar 

  • Borsook D, Becerra L et al (2006) A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 5(5):411–424

    Article  CAS  PubMed  Google Scholar 

  • De Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63:541–567

    Article  PubMed  Google Scholar 

  • Duncan JS, Sander JW et al (2006) Adult epilepsy. Lancet 367:1087–1100

  • Ebersole JS (1991) EEG dipole modelling in complex partial epilepsy. Brain Topogr 4:113–123

    Article  CAS  PubMed  Google Scholar 

  • Ebersole JS, Hawes S et al (1995) Intracranial EEG validation of spike propagation predicted by dipole models. Electroencephalogr Clin Neurophysiol 95:18

    Google Scholar 

  • Elger CE, Schmidt D (2008) Modern management of epilepsy: a practical approach. Epilepsy Behav 12:501–539

    Google Scholar 

  • Emerson RG, Turner CA et al (1995) Propagation patterns of temporal spikes. Electroencephalogr Clin Neurophysiol 94(5):338–348

    Article  CAS  PubMed  Google Scholar 

  • Fuchs M, Wagner M et al (1999) Linear and nonlinear current density reconstructions. J Clin Neurophysiol 16:267–295

    Article  CAS  PubMed  Google Scholar 

  • Grave de Peralta Menendez R, Gonzalez Andino SL (1998) A critical analysis of linear inverse solutions. IEEE Trans Biomed Eng 45:440–448

    Article  CAS  PubMed  Google Scholar 

  • Huppertz HJ, Hoegg S et al (2001) Cortical current density reconstruction of interictal epileptiform activity in temporal lobe epilepsy. Clin Neurophysiol 112(9):1761–1772

    Article  CAS  PubMed  Google Scholar 

  • Itil TM (1982) The significance of quantitative pharmaco-EEG in the discovery and classification of psychotropic drugs. In: Herrmann WM (ed) Electroencephalography in drug research. Fischer, Stuttgart , pp 131–158

  • Jefferys JGR (2003) Models and mechanisms of experimental epilepsies. Epilepsia 44:44–50

    Google Scholar 

  • Lantz G, Michel CM et al (1997) Extracranial localisation of intracranial interictal epileptiform activity using LORETA (Low Resolution Electromagnetic Tomography). Electroencephalogr Clin Neurophysiol 102:414–422

    Article  CAS  PubMed  Google Scholar 

  • Lantz G, Michel CM et al (1999) Frequency domain EEG source localization of ictal epileptiform activity in patients with partial complex epilepsy of temporal lobe origin. Electroencephalogr Clin Neurophysiol 110:176–184

    CAS  Google Scholar 

  • Lantz G, Grave de Peralta R et al (2003a) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 114(1):63–69

    Article  CAS  PubMed  Google Scholar 

  • Lantz G, Spinelli L et al (2003b) Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128 channel EEG mapping study. J Clin Neurophysiol 20(5):311–319

    Article  PubMed  Google Scholar 

  • Larsson PG, Wilson J et al (2009) A new method for quantification and assessment of epileptiform activity in EEG with special reference to focal nocturnal epileptiform activity. Brain Topogr 22:52–59

    Google Scholar 

  • Lee CM, Farde L (2006) Using positron emission tomography to facilitate CNS drug development. Trends Pharmacol Sci 27:310–316

    Article  CAS  PubMed  Google Scholar 

  • Lehnertz K, Bialonski S et al (2009) Synchronization phenomena in human epileptic brain networks J Neurosci Methods 183:42–48

    Google Scholar 

  • Merlet I, Gotman J (1999) Reliability of dipole models of epileptic spikes. Clin Neurophysiol 110:1013–1028

    Article  CAS  PubMed  Google Scholar 

  • Merlet I, Garcia-Larrea L et al (1996) Source propagation of interictal spikes in temporal lobe epilepsy. Correlations between spike dipole modelling and [18F]fluorodeoxyglucose PET data. Brain 119(Apr):377–392

    Google Scholar 

  • Michel CM, Grave de Peralta R, Lantz G, Gonzalez Andino S, Spinelli L, Blanke O, Landis T, Seeck M (1999) Spatio-temporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J Clin Neurophysiol 16:225–238

    Article  Google Scholar 

  • Michel CM, Thut G, Morand S, Khateb A, Pegna AJ, Grave de Peralta R, Gonzalez S, Seeck M, Landis T (2001) Electric source imaging of human brain functions. Brain Res Rev 36:108–118

    Article  CAS  PubMed  Google Scholar 

  • Michel CM, Lantz G, Spinelli L, Grave de Peralta Menendez R, Landis T, Seeck M (2004a) 128-channel EEG source imaging in epilepsy: clinical yield and localization precision. J Clin Neurophysiol 21:71–83

    Article  PubMed  Google Scholar 

  • Michel CM, Murray M, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004b) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  • Pellecchia M, Sem DS et al (2002) NMR in drug discovery. Nat Rev Drug Discov 1(3):211–219

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Silva FHL (1999) Functional meaning of event-related desynchronization (ERD) and synchronization (ERS). In: Pfurtscheller G, Silva FHL (eds) Event-related desynchronization, vol 6. Elsevier, Amsterdam, pp 51–65

  • Rodin E, Litzinger M et al (1995) Complexity of focal spikes suggests relative epileptogenicity. Epilepsia 36:1078–1083

    Article  CAS  PubMed  Google Scholar 

  • Saletu B, Anderer P et al (1987) Topographic brain mapping of EEG in neuropsychopharmacology. Part II. Clinical applications (pharmaco EEG imaging). Methods Find Exp Clin Pharmacol 9(6):385–408

    CAS  PubMed  Google Scholar 

  • Scherg M, Bast T et al (1999) Multiple source analysis of interictal spikes: goals, requirements, and clinical value. J Clin Neurophysiol 16(3):214–224

    Article  CAS  PubMed  Google Scholar 

  • Spedding M (2006) New directions for drug discovery. Dialogues Clin Neurosci 8(3):295–301

    PubMed  Google Scholar 

  • Sperli F, Spinelli L et al (2006) EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup. Epilepsia 47(6):981–990

    Article  PubMed  Google Scholar 

  • Spinelli L, Gonzalez Andino S et al (2000) Electromagnetic inverse solutions in anatomically constrained spherical head models. Brain Topogr 13:115–125

    Article  CAS  PubMed  Google Scholar 

  • Suffczynski P, Kalitzin S et al (2001) Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. Int J Psychophysiol 43:25–40

    Google Scholar 

  • Sutherling WW, Barth DS (1989) Neocortical propagation in temporal lobe spike foci on magnetoencephalography and electroencephalography. Ann Neurol 25:373–381

    Article  CAS  PubMed  Google Scholar 

  • Wauquier A (2005) EEG and neuropharmacology. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia, pp 660–670

  • Wise RG, Tracey I (2006) The role of fMRI in drug discovery. J Magn Reson Imaging 23(6):862–876

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Denis Brunet for the development of the analysis software CarTool, and Svein Johannessen for valuable discussions. GL is a part time employee of Electrical Geodesic Inc. MS has received consulting fees from Pfizer and Janssen-Cilag. None of the other authors has any conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Lantz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, P.G., Eeg-Olofsson, O., Michel, C.M. et al. Decrease in Propagation of Interictal Epileptiform Activity After Introduction of Levetiracetam Visualized with Electric Source Imaging. Brain Topogr 23, 269–278 (2010). https://doi.org/10.1007/s10548-010-0150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-010-0150-1

Keywords

Navigation