Skip to main content

Advertisement

Log in

Can mammographic and sonographic imaging features predict the Oncotype DX™ recurrence score in T1 and T2, hormone receptor positive, HER2 negative and axillary lymph node negative breast cancers?

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

To determine whether mammographic or sonographic features can predict the Oncotype DX™ recurrence scores (RS) in patients with TI–II, hormone receptor (HR) positive, HER2/neu negative and node negative breast cancers. Institutional board review was obtained and informed consent was waived for this retrospective study. Seventy-eight patients with stage I–II invasive breast cancer that was HR positive, HER2 negative, and lymph node negative for whom mammographic and or sonographic imaging and Oncotype DX™ assay scores were available were included in the study Four breast dedicated radiologists blinded to the RS retrospectively described the lesions according to BI-RADS lexicon descriptors. Multivariable logistic regression was used to test for significant independent predictors of low (<18) versus intermediate to high range (≥18). Two imaging features reached statistical significance in predicting low from intermediate or high risk RS: pleomorphic microcalcifications within a mass (P = 0.017); OR 8.37, 95 % CI (1.47–47.79) on mammography and posterior acoustic enhancement in a mass on ultrasound (P = 0.048); OR 4.35, 95 % CI (1.01–18.73) on multivariable logistic regression. A mass with pleomorphic microcalcifications on mammography or the presence of posterior acoustic enhancement on ultrasound may predict an intermediate to high RS as determined by the Oncotype DXTM assay in patients with stage I–II HR positive, HER2 negative, and lymph node negative invasive breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  PubMed  CAS  Google Scholar 

  2. Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24(23):3726–3734

    Article  PubMed  CAS  Google Scholar 

  3. Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22(8):1736–1747

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Kelly CM, Krishnamurthy S, Bianchini G et al (2010) Utility of Oncotype DX risk estimates in clinically intermediate risk hormone receptor-positive, HER2-normal, grade II, lymph node-negative breast cancers. Cancer 116(22):5161–5167

    Article  PubMed  Google Scholar 

  5. Kittaneh M, Montero AJ, Gluck S (2013) Molecular profiling for breast cancer: a comprehensive review. Biomark Cancer 5:61–70

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Fisher B, Dignam J, Wolmark N et al (1997) Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst 89(22):1673–1682

    Article  PubMed  CAS  Google Scholar 

  7. Independent U.K. Panel on Breast Cancer Screening (2012) The benefits and harms of breast cancer screening: an independent review. Lancet 380(9855):1778–1786

    Article  Google Scholar 

  8. Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5(1):5–23

    Article  PubMed  CAS  Google Scholar 

  9. Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bleyer A, Welch HG (2012) Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 367(21):1998–2005

    Article  PubMed  CAS  Google Scholar 

  11. Amir E, Bedard PL, Ocana A, Seruga B (2012) Benefits and harms of detecting clinically occult breast cancer. J Natl Cancer Inst 104(20):1542–1547

    Article  PubMed  Google Scholar 

  12. Baum M (2013) Harms from breast cancer screening outweigh benefits if death caused by treatment is included. BMJ 346:f385

    Article  PubMed  Google Scholar 

  13. de Gelder R, Heijnsdijk EA, van Ravesteyn NT, Fracheboud J, Draisma G, de Koning HJ (2011) Interpreting overdiagnosis estimates in population-based mammography screening. Epidemiol Rev 33(1):111–121

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gotzsche PC, Jorgensen KJ, Zahl PH, Maehlen J (2012) Why mammography screening has not lived up to expectations from the randomised trials. Cancer Causes Control 23(1):15–21

    Article  PubMed  Google Scholar 

  15. Hellquist BN, Duffy SW, Nystrom L, Jonsson H (2012) Overdiagnosis in the population-based service screening programme with mammography for women aged 40 to 49 years in Sweden. J Med Screen 19(1):14–19

    Article  PubMed  Google Scholar 

  16. Jorgensen KJ, Gotzsche PC (2009) Overdiagnosis in publicly organised mammography screening programmes: systematic review of incidence trends. BMJ 339:b2587

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kalager M, Adami HO, Bretthauer M, Tamimi RM (2012) Overdiagnosis of invasive breast cancer due to mammography screening: results from the Norwegian screening program. Ann Intern Med 156(7):491–499

    Article  PubMed  Google Scholar 

  18. Puliti D, Paci E (2009) The other side of technology: risk of overdiagnosis of breast cancer with mammography screening. Future Oncol 5(4):481–491

    Article  PubMed  Google Scholar 

  19. Miller AB, Wall C, Baines CJ, Sun P, To T, Narod SA (2014) Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial. BMJ 348:g366

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pace LE, Keating NL (2014) A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA 311(13):1327–1335

    Article  PubMed  CAS  Google Scholar 

  21. D’Orsi DJ, Bassett LW, Berg WA (2003) Breast imaging reporting and data system: ACR BI-RADS mammography, 4th edn. American College of Radiology, Reston

    Google Scholar 

  22. Daye D, Gavenonis S, Keller B, Ashraf A, Mies C, Feldman M, Rosen M, Kontos D (2012) Breast MRI tumor features as predictive markers of breast cancer recurrence. In: Radiological Society of North America 2012 scientific assembly and annual meeting, Nov 25–30, Chicago

  23. Tabar L, Chen HH, Duffy SW et al (2000) A novel method for prediction of long-term outcome of women with T1a, T1b, and 10–14 mm invasive breast cancers: a prospective study. Lancet 355(9202):429–433

    Article  PubMed  CAS  Google Scholar 

  24. Slanetz PJ, Giardino AA, Oyama T et al (2001) Mammographic appearance of ductal carcinoma in situ does not reliably predict histologic subtype. Breast J 7(6):417–421

    Article  PubMed  CAS  Google Scholar 

  25. Stomper PC, Connolly JL (1992) Ductal carcinoma in situ of the breast: correlation between mammographic calcification and tumor subtype. Am J Roentgenol 159(3):483–485

    Article  CAS  Google Scholar 

  26. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA (1995) Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 196(1):123–134

    Article  PubMed  CAS  Google Scholar 

  27. Dogan BE, Gonzalez-Angulo AM, Gilcrease M, Dryden MJ, Yang WT (2010) Multimodality imaging of triple receptor-negative tumors with mammography, ultrasound, and MRI. Am J Roentgenol 194(4):1160–1166

    Article  Google Scholar 

  28. Dogan, BE, Turnbull, LW (2012) Imaging of triple-negative breast cancer. Ann Oncol 23(Suppl 6):vi23–vi29

    Article  PubMed  Google Scholar 

  29. Ko ES, Lee BH, Kim HA, Noh WC, Kim MS, Lee SA (2010) Triple-negative breast cancer: correlation between imaging and pathological findings. Eur Radiol 20(5):1111–1117

    Article  PubMed  Google Scholar 

  30. Kojima Y, Tsunoda H (2011) Mammography and ultrasound features of triple-negative breast cancer. Breast Cancer 18(3):146–151

    Article  PubMed  Google Scholar 

  31. Krizmanich-Conniff KM, Paramagul C, Patterson SK et al (2012) Triple receptor-negative breast cancer: imaging and clinical characteristics. Am J Roentgenol 199(2):458–464

    Article  Google Scholar 

Download references

Conflict of interest

M.M.Y., A.P.R., F.C.M., J.N., R.K., K.L.A. and D.Y. have no relevant conflicts of interest to disclose. S.G. has received compensated research and advisory role for Genomics Health Inc and Agendia Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Maria Yepes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yepes, M.M., Romilly, A.P., Collado-Mesa, F. et al. Can mammographic and sonographic imaging features predict the Oncotype DX™ recurrence score in T1 and T2, hormone receptor positive, HER2 negative and axillary lymph node negative breast cancers?. Breast Cancer Res Treat 148, 117–123 (2014). https://doi.org/10.1007/s10549-014-3143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3143-z

Keywords

Navigation