Skip to main content

Advertisement

Log in

Breast cancer risk prediction: an update to the Rosner–Colditz breast cancer incidence model

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

To update and expand the Rosner–Colditz breast cancer incidence model by evaluating the contributions of more recently identified risk factors as well as predicted percent mammographic density (MD) to breast cancer risk.

Methods

Using data from the Nurses’ Health Study (NHS) and NHSII, we added adolescent somatotype (9 unit scale), vegetable intake (servings/day), breastfeeding (months), physical activity (MET-h/week), and predicted percent MD to the Rosner–Colditz model to determine whether these variables improved model discrimination. We evaluated all invasive as well as ER+/PR+, ER+/PR−, and ER−/PR− breast cancer.

Results

In the NHS/NHSII, we accrued over 5200 cases of invasive breast cancer over more than 20 years of follow-up with complete data on the risk factors. Adolescent somatotype and predicted percent MD significantly improved the original Rosner–Colditz model for all invasive breast cancer (change in age-adjusted AUC = 0.020, p < 0.001). The relative risk (RR) of invasive breast cancer for a 4-unit increase in adolescent somatotype was 0.62 (95% CI 0.56, 0.70), whereas the RR for a 20-unit increase in predicted percent MD was 1.32 (95% CI 1.28, 1.36). Adolescent somatotype and predicted percent MD also significantly improved the ER+/PR+model (change in age-adjusted AUC = 0.020, p < 0.001) as well as the ER+/PR− model (change in age-adjusted AUC = 0.012, p = 0.007). Adolescent somatotype, predicted percent MD, breastfeeding, and vegetable intake improved the ER−/PR− model (change in AUC = 0.031, p < 0.0001). The RR of ER−/PR− disease for 5 vegetable servings/day increase was 0.83 (95% CI 0.70, 0.99), while the RR for every 12 months of breastfeeding was 0.88 (95% CI 0.77, 1.01). Physical activity did not improve risk classification in any model.

Conclusion

Adolescent somatotype and predicted percent MD significantly improved breast cancer risk classification using the Rosner–Colditz model. Further, risk factors specific to ER− disease, such as breastfeeding and vegetable intake, may also help improve risk prediction of this aggressive subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NHS:

Nurses’ Health Study

BMI:

Body mass index

BBD:

Benign breast disease

HT:

Hormone therapy

MD:

Mammographic density

ER:

Estrogen receptor

PR:

Progesterone receptor

References

  1. Rosner B, Colditz GA (1996) Nurses’ health study: log-incidence mathematical model of breast cancer incidence. J Natl Cancer Inst 88(6):359–364

    Article  CAS  PubMed  Google Scholar 

  2. Colditz GA, Rosner B (2000) Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses’ Health Study. Am J Epidemiol 152(10):950–964

    Article  CAS  PubMed  Google Scholar 

  3. Li J et al (2010) Effects of childhood body size on breast cancer tumour characteristics. Breast Cancer Res 12(2):R23

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahlgren M et al (2004) Growth patterns and the risk of breast cancer in women. N Engl J Med 351(16):1619–1626

    Article  CAS  PubMed  Google Scholar 

  5. Bardia A et al (2008) Relative weight at age 12 and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 17(2):374–378

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hilakivi-Clarke L et al (2001) Tallness and overweight during childhood have opposing effects on breast cancer risk. Br J Cancer 85(11):1680–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baer HJ et al (2005) Body fatness during childhood and adolescence and incidence of breast cancer in premenopausal women: a prospective cohort study. Breast Cancer Res 7(3):R314–R325

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baer HJ et al (2010) Body fatness at young ages and risk of breast cancer throughout life. Am J Epidemiol 171(11):1183–1194

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eliassen AH et al (2010) Physical activity and risk of breast cancer among postmenopausal women. Arch Intern Med 170(19):1758–1764

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peters TM et al (2009) Physical activity and postmenopausal breast cancer risk in the NIH-AARP diet and health study. Cancer Epidemiol Biomarkers Prev 18(1):289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dallal CM et al (2007) Long-term recreational physical activity and risk of invasive and in situ breast cancer: the California teachers study. Arch Intern Med 167(4):408–415

    Article  PubMed  Google Scholar 

  12. Steindorf K et al (2013) Physical activity and risk of breast cancer overall and by hormone receptor status: the European prospective investigation into cancer and nutrition. Int J Cancer 132(7):1667–1678

    Article  CAS  PubMed  Google Scholar 

  13. Wu Y, Zhang D, Kang S (2013) Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 137(3):869–882

    Article  PubMed  Google Scholar 

  14. Neilson HK et al (2017) Moderate-vigorous recreational physical activity and breast cancer risk, stratified by menopause status: a systematic review and meta-analysis. Menopause 24(3):322–344

    Article  PubMed  Google Scholar 

  15. Fung TT et al (2005) Dietary patterns and the risk of postmenopausal breast cancer. Int J Cancer 116(1):116–121

    Article  CAS  PubMed  Google Scholar 

  16. Fung TT et al (2013) Intake of specific fruits and vegetables in relation to risk of estrogen receptor-negative breast cancer among postmenopausal women. Breast Cancer Res Treat 138(3):925–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung S et al (2013) Fruit and vegetable intake and risk of breast cancer by hormone receptor status. J Natl Cancer Inst 105(3):219–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sisti JS et al (2015) Reproductive factors, tumor estrogen receptor status and contralateral breast cancer risk: results from the WECARE study. Springerplus 4:825

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sisti JS et al (2015) Reproductive risk factors in relation to molecular subtypes of breast cancer: results from the Nurses’ Health Studies. Int J Cancer 18(10):29968

    Google Scholar 

  20. Boyd NF et al (2009) Mammographic density. Breast Cancer Res 11(Suppl 3):S4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Warwick J et al (2014) Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Res 16(5):451

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brentnall AR et al (2015) Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res 17(1):147

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rice MS, Rosner BA, Tamimi RM (2017) Percent mammographic density prediction: development of a model in the Nurses’ Health Studies. Cancer Causes Control 28(7):677–684

    Article  PubMed  Google Scholar 

  24. Harris HR et al (2011) Body size across the life course, mammographic density, and risk of breast cancer. Am J Epidemiol 174(8):909–918

    Article  PubMed  PubMed Central  Google Scholar 

  25. Colditz GA et al (2003) Physical activity and risk of breast cancer in premenopausal women. Br J Cancer 89(5):847–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rice MS et al (2016) Mammographic density and breast cancer risk: a mediation analysis. Breast Cancer Res 18(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yaghjyan L et al (2015) Postmenopausal mammographic breast density and subsequent breast cancer risk according to selected tissue markers. Br J Cancer 113(7):1104–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamimi RM et al (2012) Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer. Breast Cancer Res Treat 131(1):159–167

    Article  CAS  PubMed  Google Scholar 

  29. Rosner B, Glynn RJ (2009) Power and sample size estimation for the Wilcoxon rank sum test with application to comparisons of C statistics from alternative prediction models. Biometrics 65(1):188–197

    Article  CAS  PubMed  Google Scholar 

  30. DerSimonian R (1996) Meta-analysis in the design and monitoring of clinical trials. Stat Med 15(12):1237–1248; discussion 1249–1252

  31. Rosner B et al (2008) Risk prediction models with incomplete data with application to prediction of estrogen receptor-positive breast cancer: prospective data from the Nurses’ Health Study. Breast Cancer Res 10(4):R55

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rosner BA et al (2013) Validation of Rosner–Colditz breast cancer incidence model using an independent data set, the California Teachers Study. Breast Cancer Res Treat 142(1):187–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berkey CS et al (1999) Adolescence and breast carcinoma risk. Cancer 85(11):2400–2409

    Article  CAS  PubMed  Google Scholar 

  34. Baer HJ et al (2007) Adiposity and sex hormones in girls. Cancer Epidemiol Biomarkers Prev 16(9):1880–1888

    Article  CAS  PubMed  Google Scholar 

  35. Poole EM et al (2011) Body size in early life and adult levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3. Am J Epidemiol 174(6):642–651

    Article  PubMed  PubMed Central  Google Scholar 

  36. Samimi G et al (2008) Measures of energy balance and mammographic density in the Nurses’ Health Study. Breast Cancer Res Treat 109(1):113–122

    Article  PubMed  Google Scholar 

  37. McCormack VA, dos Santos I (2006) Silva, Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15(6):1159–1169

    Article  PubMed  Google Scholar 

  38. Tice JA et al (2008) Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med 148(5):337–347

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vachon CM et al (2015) The contributions of breast density and common genetic variation to breast cancer risk. J Natl Cancer Inst 107(5):dju397

    Article  PubMed  PubMed Central  Google Scholar 

  40. Michailidou K et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45(4):353–361, 361e1–2

  41. Tworoger SS et al (2014) Inclusion of endogenous hormone levels in risk prediction models of postmenopausal breast cancer. J Clin Oncol 32(28):3111–3117

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by research Grants from the National Cancer Institute, National Institutes of Health, UM1 CA186107, P01 CA87969, UM1 CA176726, R01CA175080, and T32 CA09001. We would like to thank the participants of the Nurses’ Health Study and Nurses’ Health Study II for their continuing contributions. We thank the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan S. Rice.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, M.S., Tworoger, S.S., Hankinson, S.E. et al. Breast cancer risk prediction: an update to the Rosner–Colditz breast cancer incidence model. Breast Cancer Res Treat 166, 227–240 (2017). https://doi.org/10.1007/s10549-017-4391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4391-5

Keywords

Navigation