Skip to main content

Advertisement

Log in

A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Over a million new cases of cancers are diagnosed each year in the United States and over half of these patients die from these devastating diseases. Thus, cancers cause a major public health problem in the United States and worldwide. Chemotherapy remains the principal mode to treat many metastatic cancers. However, occurrence of cellular multidrug resistance (MDR) prevents efficient killing of cancer cells, leading to chemotherapeutic treatment failure. Numerous mechanisms of MDR exist in cancer cells, such as intrinsic or acquired MDR. Overexpression of ATP-binding cassette (ABC) drug transporters, such as P-glycoprotein (P-gp or ABCB1), breast cancer resistance protein (BCRP or ABCG2) and/or multidrug resistance-associated protein (MRP1 or ABCC1), confers an acquired MDR due to their capabilities of transporting a broad range of chemically diverse anticancer drugs. In addition to their roles in MDR, there is substantial evidence suggesting that these drug transporters have functions in tissue defense. Basically, these drug transporters are expressed in tissues important for absorption, such as in lung and gut, and for metabolism and elimination, such as in liver and kidney. In addition, these drug transporters play an important role in maintaining the barrier function of many tissues including blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier. Thus, these ATP-dependent drug transporters play an important role in the absorption, disposition and elimination of the structurally diverse array of the endobiotics and xenobiotics. In this review, the molecular mechanism of ATP-dependent solute transport by MRP1 will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  2. Choudhuri, S., & Klaassen, C. D. (2006). Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. International Journal of Toxicology, 25, 231–259.

    Article  PubMed  CAS  Google Scholar 

  3. Cole, S. P., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C., et al. (1992). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line [see comments]. Science, 258, 1650–1654.

    Article  PubMed  CAS  Google Scholar 

  4. Mirski, S. E., Gerlach, J. H., & Cole, S. P. (1987). Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Research, 47, 2594–2598.

    PubMed  CAS  Google Scholar 

  5. Cole, S. P., Chanda, E. R., Dicke, F. P., Gerlach, J. H., & Mirski, S. E. (1991). Non-P-glycoprotein-mediated multidrug resistance in a small cell lung cancer cell line: Evidence for decreased susceptibility to drug-induced DNA damage and reduced levels of topoisomerase II. Cancer Research, 51, 3345–3352.

    PubMed  CAS  Google Scholar 

  6. Grant, C. E., Valdimarsson, G., Hipfner, D. R., Almquist, K. C., Cole, S. P., & Deeley, R. G. (1994). Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Research, 54, 357–361.

    PubMed  CAS  Google Scholar 

  7. Marquardt, D., McCrone, S., & Center, M. S. (1990). Mechanisms of multidrug resistance in HL60 cells: Detection of resistance-associated proteins with antibodies against synthetic peptides that correspond to the deduced sequence of P-glycoprotein. Cancer Research, 50, 1426–1430.

    PubMed  CAS  Google Scholar 

  8. Krishnamachary, N., & Center, M. S. (1993). The MRP gene associated with a non-P-glycoprotein multidrug resistance encodes a 190-kDa membrane bound glycoprotein. Cancer Research, 53, 3658–3661.

    PubMed  CAS  Google Scholar 

  9. Juliano, R. L., & Ling, V. (1976). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica et Biophysica Acta, 455, 152–162.

    PubMed  CAS  Google Scholar 

  10. Slovak, M. L., Ho, J. P., Bhardwaj, G., Kurz, E. U., Deeley, R. G., & Cole, S. P. (1993). Localization of a novel multidrug resistance-associated gene in the HT1080/DR4 and H69AR human tumor cell lines. Cancer Research, 53, 3221–3225.

    PubMed  CAS  Google Scholar 

  11. Grant, C. E., Kurz, E. U., Cole, S. P., & Deeley, R. G. (1997). Analysis of the intron-exon organization of the human multidrug-resistance protein gene (MRP) and alternative splicing of its mRNA. Genomics, 45, 368–378.

    Article  PubMed  CAS  Google Scholar 

  12. Hipfner, D. R., Deeley, R. G., & Cole, S. P. (1999). Structural, mechanistic and clinical aspects of MRP1. Biochimica et Biophysica Acta, 1461, 359–376.

    PubMed  CAS  Google Scholar 

  13. Borst, P., Evers, R., Kool, M., & Wijnholds, J. (1999). The multidrug resistance protein family. Biochimica et Biophysica Acta, 1461, 347–357.

    PubMed  CAS  Google Scholar 

  14. Dean, M., Rzhetsky, A., & Allikmets, R. (2001). The human ATP-binding cassette (ABC) transporter superfamily. Genome Research, 11, 1156–1166.

    Article  PubMed  CAS  Google Scholar 

  15. Cole, S. P., & Deeley, R. G. (1998). Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. Bioessays, 20, 931–940.

    Article  PubMed  CAS  Google Scholar 

  16. Gao, M., Cui, H. R., Loe, D. W., Grant, C. E., Almquist, K. C., Cole, S. P., et al. (2000). Comparison of the functional characteristics of the nucleotide binding domains of multidrug resistance protein 1. Journal of Biological Chemistry, 275, 13098–13108.

    Article  PubMed  CAS  Google Scholar 

  17. Chen, C. J., Chin, J. E., Ueda, K., Clark, D. P., Pastan, I., Gottesman, M. M., et al. (1986). Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell, 47, 381–389.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, J. T., & Ling, V. (1991). Study of membrane orientation and glycosylated extracellular loops of mouse P-glycoprotein by in vitro translation. Journal of Biological Chemistry, 266, 18224–18232.

    PubMed  CAS  Google Scholar 

  19. Gros, P., Croop, J., & Housman, D. (1986). Mammalian multidrug resistance gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell, 47, 371–380.

    Article  PubMed  CAS  Google Scholar 

  20. Gerlach, J. H., Endicott, J. A., Juranka, P. F., Henderson, G., Sarangi, F., Deuchars, K. L., et al. (1986). Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature, 324, 485–489.

    Article  PubMed  CAS  Google Scholar 

  21. Bakos, E., Hegedus, T., Hollo, Z., Welker, E., Tusnady, G. E., Zaman, G. J., et al. (1996). Membrane topology and glycosylation of the human multidrug resistance-associated protein. Journal of Biological Chemistry, 271, 12322–12326.

    Article  PubMed  CAS  Google Scholar 

  22. Hipfner, D. R., Almquist, K. C., Leslie, E. M., Gerlach, J. H., Grant, C. E., Deeley, R. G., et al. (1997). Membrane topology of the multidrug resistance protein (MRP). A study of glycosylation-site mutants reveals an extracytosolic NH2 terminus. Journal of Biological Chemistry, 272, 23623–23630.

    Article  PubMed  CAS  Google Scholar 

  23. Borst, P., Evers, R., Kool, M., & Wijnholds, J. (2000). A family of drug transporters: The multidrug resistance-associated proteins. Journal of National Cancer Institute, 92, 1295–1302.

    Article  CAS  Google Scholar 

  24. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989). Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science, 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, S. H., & Altenberg, G. A. (2003). Transport of leukotriene C4 by a cysteine-less multidrug resistance protein 1 (MRP1). Biochemical Journal, 370, 357–360.

    Article  PubMed  CAS  Google Scholar 

  26. Bakos, E., Evers, R., Szakacs, G., Tusnady, G. E., Welker, E., Szabo, K., et al. (1998). Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. Journal of Biological Chemistry, 273, 32167–32175.

    Article  PubMed  CAS  Google Scholar 

  27. Krishnamachary, N., Ma, L., Zheng, L., Safa, A. R., & Center, M. S. (1994). Analysis of MRP gene expression and function in HL60 cells isolated for resistance to adriamycin. Oncology Research, 6, 119–127.

    PubMed  CAS  Google Scholar 

  28. Almquist, K. C., Loe, D. W., Hipfner, D. R., Mackie, J. E., Cole, S. P., & Deeley, R. G. (1995). Characterization of the M(r) 190,000 multidrug resistance protein (MRP) in drug-selected and transfected human tumor cell. Cancer Research, 55, 102–110.

    PubMed  CAS  Google Scholar 

  29. Zaman, G. J., Flens, M. J., van Leusden, M. R., de Haas, M., Mulder, H. S., Lankelma, J., et al. (1994). The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proceedings of the National Academy of Sciences of the United States of America, 91, 8822–8826.

    Article  PubMed  CAS  Google Scholar 

  30. Cole, S. P., Sparks, K. E., Fraser, K., Loe, D. W., Grant, C. E., Wilson, G. M., et al. (1994). Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Research, 54, 5902–5910.

    PubMed  CAS  Google Scholar 

  31. Chang, X. B., Hou, Y. X., & Riordan, J. R. (1997). ATPase activity of purified multidrug resistance-associated protein [published erratum appears in J Biol Chem 1998 Mar 27;273(13):7782]. Journal of Biological Chemistry, 272, 30962–30968.

    Article  PubMed  CAS  Google Scholar 

  32. Leslie, E. M., Deeley, R. G., & Cole, S. P. (2001). Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology, 167, 3–23.

    Article  PubMed  CAS  Google Scholar 

  33. Loe, D. W., Almquist, K. C., Deeley, R. G., & Cole, S. P. (1996). Multidrug resistance protein (MRP)-mediated transport of leukotriene C4 and chemotherapeutic agents in membrane vesicles. Demonstration of glutathione-dependent vincristine transport. Journal of Biological Chemistry, 271, 9675–9682.

    Article  PubMed  CAS  Google Scholar 

  34. Renes, J., de Vries, E. G., Nienhuis, E. F., Jansen, P. L., & Muller, M. (1999). ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. British Journal of Pharmacology, 126, 681–688.

    Article  PubMed  CAS  Google Scholar 

  35. Loe, D. W., Deeley, R. G., & Cole, S. P. (1998). Characterization of vincristine transport by the M(r) 190,000 multidrug resistance protein (MRP): Evidence for cotransport with reduced glutathione. Cancer Research, 58, 5130–5136.

    PubMed  CAS  Google Scholar 

  36. Salerno, M., & Garnier-Suillerot, A. (2001). Kinetics of glutathione and daunorubicin efflux from multidrug resistance protein overexpressing small-cell lung cancer cells. European Journal of Pharmacology, 421, 1–9.

    Article  PubMed  CAS  Google Scholar 

  37. Leier, I., Jedlitschky, G., Buchholz, U., Center, M., Cole, S. P., Deeley, R. G., et al. (1996). ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochemical Journal, 314, 433–437.

    PubMed  CAS  Google Scholar 

  38. Leslie, E. M., Deeley, R. G., & Cole, S. P. (2003). Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). Drug Metabolism and Disposition, 31, 11–15.

    Article  PubMed  CAS  Google Scholar 

  39. Manciu, L., Chang, X. B., Buyse, F., Hou, Y. X., Gustot, A., Riordan, J. R., et al. (2003). Intermediate structural states involved in MRP1-mediated drug transport. Role of glutathione. Journal of Biological Chemistry, 278, 3347–3356.

    Article  PubMed  CAS  Google Scholar 

  40. Hou, Y., Cui, L., Riordan, J. R., & Chang, X. B. (2000). Allosteric interactions between the two non-equivalent nucleotide binding domains of multidrug resistance protein MRP1. Journal of Biological Chemistry, 275, 20280–20287.

    Article  PubMed  CAS  Google Scholar 

  41. Loe, D. W., Deeley, R. G., & Cole, S. P. (2000). Verapamil stimulates glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). Journal of Pharmacology and Experimental Therapeutics, 293, 530–538.

    PubMed  CAS  Google Scholar 

  42. Leslie, E. M., Mao, Q., Oleschuk, C. J., Deeley, R. G., & Cole, S. P. (2001). Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids. Molecular Pharmacology, 59, 1171–1180.

    PubMed  CAS  Google Scholar 

  43. Leier, I., Jedlitschky, G., Buchholz, U., & Keppler, D. (1994). Characterization of the ATP-dependent leukotriene C4 export carrier in mastocytoma cells. European Journal of Biochemistry, 220, 599–606.

    Article  PubMed  CAS  Google Scholar 

  44. Keppler, D., Leier, I., & Jedlitschky, G. (1997). Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biological Chemistry, 378, 787–791.

    PubMed  CAS  Google Scholar 

  45. Jedlitschky, G., Leier, I., Buchholz, U., Barnouin, K., Kurz, G., & Keppler, D. (1996). Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Research, 56, 988–994.

    PubMed  CAS  Google Scholar 

  46. Jedlitschky, G., Leier, I., Buchholz, U., Hummel-Eisenbeiss, J., Burchell, B., & Keppler, D. (1997). ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochemical Journal, 327(Pt 1), 305–310.

    PubMed  CAS  Google Scholar 

  47. Loe, D. W., Almquist, K. C., Cole, S. P., & Deeley, R. G. (1996). ATP-dependent 17 beta-estradiol 17-(beta-D-glucuronide) transport by multidrug resistance protein (MRP). Inhibition by cholestatic steroids. Journal of Biological Chemistry, 271, 9683–9689.

    Article  PubMed  CAS  Google Scholar 

  48. Jedlitschky, G., Leier, I., Buchholz, U., Center, M., & Keppler, D. (1994). ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Research, 54, 4833–4836.

    PubMed  CAS  Google Scholar 

  49. Leier, I., Jedlitschky, G., Buchholz, U., Cole, S. P., Deeley, R. G., & Keppler, D. (1994). The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. Journal of Biological Chemistry, 269, 27807–27810.

    PubMed  CAS  Google Scholar 

  50. Muller, M., Meijer, C., Zaman, G. J., Borst, P., Scheper, R. J., Mulder, N. H., et al. (1994). Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proceedings of the National Academy of Sciences of the United States of America, 91, 13033–13037.

    Article  PubMed  CAS  Google Scholar 

  51. Wijnholds, J., Evers, R., van Leusden, M. R., Mol, C. A., Zaman, G. J., Mayer, U., et al. (1997). Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Natural Medicines, 3, 1275–1279.

    Article  CAS  Google Scholar 

  52. Leslie, E. M., Bowers, R. J., Deeley, R. G., & Cole, S. P. (2003). Structural requirements for functional interaction of glutathione tripeptide analogs with the human multidrug resistance protein 1 (MRP1). Journal of Pharmacology and Experimental Therapeutics, 304, 643–653.

    Article  PubMed  CAS  Google Scholar 

  53. Qian, Y. M., Song, W. C., Cui, H., Cole, S. P., & Deeley, R. G. (2001). Glutathione stimulates sulfated estrogen transport by multidrug resistance protein 1. Journal of Biological Chemistry, 276, 6404–6411.

    Article  PubMed  CAS  Google Scholar 

  54. Leslie, E. M., Ito, K., Upadhyaya, P., Hecht, S. S., Deeley, R. G., & Cole, S. P. (2001). Transport of the beta -O-glucuronide conjugate of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by the multidrug resistance protein 1 (MRP1). Requirement for glutathione or a non-sulfur-containing analog. Journal of Biological Chemistry, 276, 27846–27854.

    Article  PubMed  CAS  Google Scholar 

  55. Muller, M., de Vries, E. G., & Jansen, P. L. (1996). Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells. Journal of Hepatology, 24, 100–108.

    PubMed  CAS  Google Scholar 

  56. Stride, B. D., Grant, C. E., Loe, D. W., Hipfner, D. R., Cole, S. P. C., & Deeley, R. G. (1997). Pharmacological characterization of the murine and human orthologs of multidrug-resistance protein in transfected human embryonic kidney cells. Molecular Pharmacology, 52, 344–353.

    PubMed  CAS  Google Scholar 

  57. Gao, M., Loe, D. W., Grant, C. E., Cole, S. P. C., & Deeley, R. G. (1996). Reconstitution of ATP-dependent leukotriene C4 transport by co-expression of both half-molecules of human multidrug resistance protein in insect cells. Journal of Biological Chemistry, 271, 27782–27787.

    Article  PubMed  CAS  Google Scholar 

  58. Keppler, D., Leier, I., Jedlitschky, G., Mayer, R., & Buchler, M. (1996). The function of the multidrug resistance proteins (MRP and cMRP) in drug conjugate transport and hepatobiliary excretion. Advances in Enzyme Regulation, 36, 17–29.

    Article  PubMed  CAS  Google Scholar 

  59. Lautier, D., Canitrot, Y., Deeley, R. G., & Cole, S. P. (1996). Multidrug resistance mediated by the multidrug resistance protein (MRP) gene. Biochemical Pharmacology, 52, 967–977.

    Article  PubMed  CAS  Google Scholar 

  60. Ren, X. Q., Furukawa, T., Aoki, S., Nakajima, T., Sumizawa, T., Haraguchi, M., et al. (2001). Glutathione-dependent binding of a photoaffinity analog of agosterol A to the C-terminal half of human multidrug resistance protein. Journal of Biological Chemistry, 276, 23197–23206.

    Article  PubMed  CAS  Google Scholar 

  61. Payen, L., Gao, M., Westlake, C., Theis, A., Cole, S. P., & Deeley, R. G. (2005). Functional interactions between nucleotide binding domains and leukotriene C4 binding sites of multidrug resistance protein 1 (ABCC1). Molecular Pharmacology, 67, 1944–1953.

    Article  PubMed  CAS  Google Scholar 

  62. Payen, L. F., Gao, M., Westlake, C. J., Cole, S. P., & Deeley, R. G. (2003). Role of carboxylate residues adjacent to the conserved core Walker B motifs in the catalytic cycle of multidrug resistance protein 1 (ABCC1). Journal of Biological Chemistry, 278, 38537–38547.

    Article  PubMed  CAS  Google Scholar 

  63. Qian, Y. M., Qiu, W., Gao, M., Westlake, C. J., Cole, S. P., & Deeley, R. G. (2001). Characterization of binding of leukotriene C4 by human multidrug resistance protein 1: Evidence of differential interactions with NH2- and COOH-proximal halves of the protein. Journal of Biological Chemistry, 276, 38636–38644.

    Article  PubMed  CAS  Google Scholar 

  64. Karwatsky, J., Leimanis, M., Cai, J., Gros, P., & Georges, E. (2005). The leucotriene C4 binding sites in multidrug resistance protein 1 (ABCC1) include the first membrane multiple spanning domain. Biochemistry, 44, 340–351.

    Article  PubMed  CAS  Google Scholar 

  65. Daoud, R., Desneves, J., Deady, L. W., Tilley, L., Scheper, R. J., Gros, P., et al. (2000). The multidrug resistance protein is photoaffinity labeled by a quinoline-based drug at multiple sites. Biochemistry, 39, 6094–6102.

    Article  PubMed  CAS  Google Scholar 

  66. Daoud, R., Kast, C., Gros, P., & Georges, E. (2000). Rhodamine 123 binds to multiple sites in the multidrug resistance protein (MRP1). Biochemistry, 39, 15344–15352.

    Article  PubMed  CAS  Google Scholar 

  67. Qian, Y. M., Grant, C. E., Westlake, C. J., Zhang, D. W., Lander, P. A., Shepard, R. L., et al. (2002). Photolabeling of human and murine multidrug resistance protein 1 with the high affinity inhibitor [125I]LY475776 and azidophenacyl-[35S]glutathione. Journal of Biological Chemistry, 277, 35225–35231.

    Article  PubMed  CAS  Google Scholar 

  68. Mao, Q., Qiu, W., Weigl, K. E., Lander, P. A., Tabas, L. B., Shepard, R. L., et al. (2002). GSH-dependent photolabeling of multidrug resistance protein MRP1 (ABCC1) by [125I]LY475776. Evidence of a major binding site in the COOH-proximal membrane spanning domain. Journal of Biological Chemistry, 277, 28690–28699.

    Article  PubMed  CAS  Google Scholar 

  69. Daoud, R., Julien, M., Gros, P., & Georges, E. (2001). Major photoaffinity drug binding sites in multidrug resistance protein 1 (MRP1) are within transmembrane domains 10–11 and 16–17. Journal of Biological Chemistry, 276, 12324–12330.

    Article  PubMed  CAS  Google Scholar 

  70. Greenberger, L. M. (1993). Major photoaffinity drug labeling sites for iodoaryl azidoprazosin in P-glycoprotein are within, or immediately C-terminal to, transmembrane domains 6 and 12. Journal of Biological Chemistry, 268, 11417–11425.

    PubMed  CAS  Google Scholar 

  71. Loo, T. W., & Clarke, D. M. (1997). Identification of residues in the drug-binding site of human P-glycoprotein using a thiol-reactive substrate. Journal of Biological Chemistry, 272, 31945–31948.

    Article  PubMed  CAS  Google Scholar 

  72. Dey, S., Ramachandra, M., Pastan, I., Gottesman, M. M., & Ambudkar, S. V. (1997). Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 94, 10594–10599.

    Article  PubMed  CAS  Google Scholar 

  73. Shapiro, A. B., Fox, K., Lam, P., & Ling, V. (1999). Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. European Journal of Biochemistry, 259, 841–850.

    Article  PubMed  CAS  Google Scholar 

  74. Leslie, E. M., Letourneau, I. J., Deeley, R. G., & Cole, S. P. (2003). Functional and structural consequences of cysteine substitutions in the NH2 proximal region of the human multidrug resistance protein 1 (MRP1/ABCC1). Biochemistry, 42, 5214–5224.

    Article  PubMed  CAS  Google Scholar 

  75. Koike, K., Conseil, G., Leslie, E. M., Deeley, R. G., & Cole, S. P. (2004). Identification of proline residues in the core cytoplasmic and transmembrane regions of multidrug resistance protein 1 (MRP1/ABCC1) important for transport function, substrate specificity, and nucleotide interactions. Journal of Biological Chemistry, 279, 12325–12336.

    Article  PubMed  CAS  Google Scholar 

  76. Haimeur, A., Deeley, R. G., & Cole, S. P. (2002). Charged amino acids in the sixth transmembrane helix of multidrug resistance protein 1 (MRP1/ABCC1) are critical determinants of transport activity. Journal of Biological Chemistry, 277, 41326–41333.

    Article  PubMed  CAS  Google Scholar 

  77. Koike, K., Oleschuk, C. J., Haimeur, A., Olsen, S. L., Deeley, R. G., & Cole, S. P. (2002). Multiple membrane-associated tryptophan residues contribute to the transport activity and substrate specificity of the human multidrug resistance protein, MRP1. Journal of Biological Chemistry, 277, 49495–49503.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang, D. W., Nunoya, K., Vasa, M., Gu, H. M., Cole, S. P., & Deeley, R. G. (2006). Mutational analysis of polar amino acid residues within predicted transmembrane helices 10 and 16 of multidrug resistance protein 1 (ABCC1): Effect on substrate specificity. Drug Metabolism and Disposition, 34, 539–546.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang, D. W., Nunoya, K., Vasa, M., Gu, H. M., Theis, A., Cole, S. P., et al. (2004). Transmembrane helix 11 of multidrug resistance protein 1 (MRP1/ABCC1): Identification of polar amino acids important for substrate specificity and binding of ATP at nucleotide binding domain 1. Biochemistry, 43, 9413–9425.

    Article  PubMed  CAS  Google Scholar 

  80. Campbell, J. D., Koike, K., Moreau, C., Sansom, M. S., Deeley, R. G., & Cole, S. P. (2004). Molecular modeling correctly predicts the functional importance of Phe594 in transmembrane helix 11 of the multidrug resistance protein, MRP1 (ABCC1). Journal of Biological Chemistry, 279, 463–468.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang, D. W., Cole, S. P., & Deeley, R. G. (2001a). Identification of an amino acid residue in multidrug resistance protein 1 critical for conferring resistance to anthracyclines. Journal of Biological Chemistry, 276, 13231–13239.

    Article  PubMed  CAS  Google Scholar 

  82. Zhang, D. W., Gu, H. M., Situ, D., Haimeur, A., Cole, S. P., & Deeley, R. G. (2003). Functional importance of polar and charged amino acid residues in transmembrane helix 14 of multidrug resistance protein 1 (MRP1/ABCC1): Identification of an aspartate residue critical for conversion from a high to low affinity substrate binding state. Journal of Biological Chemistry, 278, 46052–46063.

    Article  PubMed  CAS  Google Scholar 

  83. Situ, D., Haimeur, A., Conseil, G., Sparks, K. E., Zhang, D., Deeley, R. G., et al. (2004). Mutational analysis of ionizable residues proximal to the cytoplasmic interface of membrane spanning domain 3 of the multidrug resistance protein, MRP1 (ABCC1): Glutamate 1204 is important for both the expression and catalytic activity of the transporter. Journal of Biological Chemistry, 279, 38871–38880.

    Article  PubMed  CAS  Google Scholar 

  84. Ito, K., Olsen, S. L., Qiu, W., Deeley, R. G., & Cole, S. P. (2001). Mutation of a single conserved tryptophan in multidrug resistance protein 1 (MRP1/ABCC1) results in loss of drug resistance and selective loss of organic anion transport. Journal of Biological Chemistry, 276, 15616–15624.

    Article  PubMed  CAS  Google Scholar 

  85. Zhang, D. W., Cole, S. P., & Deeley, R. G. (2001b). Identification of a nonconserved amino acid residue in multidrug resistance protein 1 important for determining substrate specificity: Evidence for functional interaction between transmembrane helices 14 and 17. Journal of Biological Chemistry, 276, 34966–34974.

    Article  PubMed  CAS  Google Scholar 

  86. Zhang, D. W., Cole, S. P., & Deeley, R. G. (2002). Determinants of the substrate specificity of multidrug resistance protein 1: Role of amino acid residues with hydrogen bonding potential in predicted transmembrane helix 17. Journal of Biological Chemistry, 277, 20934–20941.

    Article  PubMed  CAS  Google Scholar 

  87. Karwatsky, J., Daoud, R., Cai, J., Gros, P., & Georges, E. (2003). Binding of a photoaffinity analogue of glutathione to MRP1 (ABCC1) within two cytoplasmic regions (L0 and L1) as well as transmembrane domains 10–11 and 16–17. Biochemistry, 42, 3286–3294.

    Article  PubMed  CAS  Google Scholar 

  88. Karwatsky, J. M., & Georges, E. (2004). Drug binding domains of MRP1 (ABCC1) as revealed by photoaffinity labeling. Current Medicinal Chemistry. Anti-cancer Agents, 4, 19–30.

    Article  PubMed  CAS  Google Scholar 

  89. Gao, M., Yamazaki, M., Loe, D. W., Westlake, C. J., Grant, C. E., Cole, S. P. C., et al. (1998). Multidrug resistance protein—Identification of regions required for active transport of leukotriene C-4. Journal of Biological Chemistry, 273, 10733–10740.

    Article  PubMed  CAS  Google Scholar 

  90. Westlake, C. J., Qian, Y. M., Gao, M., Vasa, M., Cole, S. P., & Deeley, R. G. (2003). Identification of the structural and functional boundaries of the multidrug resistance protein 1 cytoplasmic loop 3. Biochemistry, 42, 14099–14113.

    Article  PubMed  CAS  Google Scholar 

  91. Bakos, E., Evers, R., Calenda, G., Tusnady, G. E., Szakacs, G., Varadi, A., et al. (2000). Characterization of the amino-terminal regions in the human multidrug resistance protein (MRP1). Journal of Cell Science, 113(Pt 24), 4451–4461.

    PubMed  CAS  Google Scholar 

  92. Stride, B. D., Valdimarsson, G., Gerlach, J. H., Wilson, G. M., Cole, S. P., & Deeley, R. G. (1996). Structure and expression of the messenger RNA encoding the murine multidrug resistance protein, an ATP-binding cassette transporter. Molecular Pharmacology, 49, 962–971.

    PubMed  CAS  Google Scholar 

  93. Stride, B. D., Cole, S. P., & Deeley, R. G. (1999). Localization of a substrate specificity domain in the multidrug resistance protein. Journal of Biological Chemistry, 274, 22877–22883.

    Article  PubMed  CAS  Google Scholar 

  94. Haimeur, A., Conseil, G., Deeley, R. G., & Cole, S. P. (2004). Mutations of charged amino acids in or near the transmembrane helices of the second membrane spanning domain differentially affect the substrate specificity and transport activity of the multidrug resistance protein MRP1 (ABCC1). Molecular Pharmacology, 65, 1375–1385.

    Article  PubMed  CAS  Google Scholar 

  95. Pakunlu, R. I., Cook, T. J., & Minko, T. (2003). Simultaneous modulation of multidrug resistance and antiapoptotic cellular defense by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharmaceutical Research, 20, 351–359.

    Article  PubMed  CAS  Google Scholar 

  96. Loo, T. W., & Clarke, D. M. (1996). Mutational analysis of the predicted first transmembrane segment of each homologous half of human P-glycoprotein suggests that they are symmetrically arranged in the membrane. Journal Biological Chemistry, 271, 15414–15419.

    Article  CAS  Google Scholar 

  97. Allikmets, R., Schriml, L. M., Hutchinson, A., Romano-Spica, V., & Dean, M. (1998). A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Research, 58, 5337–5339.

    PubMed  CAS  Google Scholar 

  98. Miyake, K., Mickley, L., Litman, T., Zhan, Z., Robey, R., Cristensen, B., et al. (1999). Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: Demonstration of homology to ABC transport genes. Cancer Research, 59, 8–13.

    PubMed  CAS  Google Scholar 

  99. Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 15665–15670.

    Article  PubMed  CAS  Google Scholar 

  100. Ozvegy, C., Varadi, A., & Sarkadi, B. (2002). Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation. Journal of Biological Chemistry, 277, 47980–47990.

    Article  PubMed  CAS  Google Scholar 

  101. Kage, K., Tsukahara, S., Sugiyama, T., Asada, S., Ishikawa, E., Tsuruo, T., et al. (2002). Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. International Journal of Cancer, 97, 626–630.

    Article  CAS  Google Scholar 

  102. Litman, T., Jensen, U., Hansen, A., Covitz, K. M., Zhan, Z., Fetsch, P., et al. (2002). Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2. Biochimica et Biophysica Acta, 1565, 6–16.

    PubMed  CAS  Google Scholar 

  103. Han, B., & Zhang, J. T. (2004). Multidrug resistance in cancer chemotherapy and xenobiotic protection mediated by the half ATP-binding cassette transporter ABCG2. Current Medicinal Chemistry. Anti-cancer Agents, 4, 31–42.

    Article  PubMed  CAS  Google Scholar 

  104. Georges, E., Tsuruo, T., & Ling, V. (1993). Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. Journal of Biological Chemistry, 268, 1792–1798.

    PubMed  CAS  Google Scholar 

  105. Smith, P. C., Karpowich, N., Millen, L., Moody, J. E., Rosen, J., Thomas, P. J., et al. (2002). ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Molecular Cell, 10, 139–149.

    Article  PubMed  CAS  Google Scholar 

  106. Chen, J., Lu, G., Lin, J., Davidson, A. L., & Quiocho, F. A. (2003). A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Molecular Cell, 12, 651–661.

    Article  PubMed  CAS  Google Scholar 

  107. Moody, J. E., Millen, L., Binns, D., Hunt, J. F., & Thomas, P. J. (2002). Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. Journal of Biological Chemistry, 277, 21111–21114.

    Article  PubMed  CAS  Google Scholar 

  108. Verdon, G., Albers, S. V., Dijkstra, B. W., Driessen, A. J., & Thunnissen, A. M. (2003). Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: Nucleotide-free and nucleotide-bound conformations. Journal of Molecular Biology, 330, 343–358.

    Article  PubMed  CAS  Google Scholar 

  109. Locher, K. P., Lee, A. T., & Rees, D. C. (2002). The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science, 296, 1091–1098.

    Article  PubMed  CAS  Google Scholar 

  110. Rosenberg, M. F., Mao, Q., Holzenburg, A., Ford, R. C., Deeley, R. G., & Cole, S. P. (2001). The structure of the multidrug resistance protein 1 (MRP1/ABCC1). Crystallization and single-particle analysis. Journal of Bioliogical Chemistry, 276, 16076–16082.

    Article  CAS  Google Scholar 

  111. Soszynski, M., Kaluzna, A., Rychlik, B., Sokal, A., & Bartosz, G. (1998). Radiation inactivation suggests that human multidrug resistance-associated protein 1 occurs as a dimer in the human erythrocyte membrane. Archives of Biochemistry and Biophysics, 354, 311–316.

    Article  PubMed  CAS  Google Scholar 

  112. Cool, R. H., Veenstra, M. K., van Klompenburg, W., Heyne, R. I., Muller, M., de Vries, E. G., et al. (2002). S-decyl-glutathione nonspecifically stimulates the ATPase activity of the nucleotide-binding domains of the human multidrug resistance-associated protein, MRP1 (ABCC1). European Journal of Biochemistry, 269, 3470–3478.

    Article  PubMed  CAS  Google Scholar 

  113. Kern, A., Felfoldi, F., Sarkadi, B., & Varadi, A. (2000). Expression and characterization of the N- and C-terminal ATP-binding domains of MRP1. Biochemical and Biophysical Research Communications, 273, 913–919.

    Article  PubMed  CAS  Google Scholar 

  114. Ramaen, O., Sizun, C., Pamlard, O., Jacquet, E., & Lallemand, J. Y. (2005). Attempts to characterize the NBD heterodimer of MRP1: Transient complex formation involves Gly771 of the ABC signature sequence but does not enhance the intrinsic ATPase activity. Biochemical Journal, 391, 481–490.

    Article  PubMed  CAS  Google Scholar 

  115. Ramaen, O., Leulliot, N., Sizun, C., Ulryck, N., Pamlard, O., Lallemand, J. Y., et al. (2006). Structure of the human multidrug resistance protein 1 nucleotide binding domain 1 bound to Mg2+/ATP reveals a non-productive catalytic site. Journal of Molecular Biology, 359, 940–949.

    Article  PubMed  CAS  Google Scholar 

  116. Szentpetery, Z., Sarkadi, B., Bakos, E., & Varadi, A. (2004). Functional studies on the MRP1 multidrug transporter: Characterization of ABC-signature mutant variants. Anticancer Research, 24, 449–455.

    PubMed  CAS  Google Scholar 

  117. Szentpetery, Z., Kern, A., Liliom, K., Sarkadi, B., Varadi, A., & Bakos, E. (2004). The role of the conserved glycines of ATP-binding cassette signature motifs of MRP1 in the communication between the substrate-binding site and the catalytic centers. Journal of Biological Chemistry, 279, 41670–41678.

    Article  PubMed  CAS  Google Scholar 

  118. Ren, X. Q., Furukawa, T., Haraguchi, M., Sumizawa, T., Aoki, S., Kobayashi, M., et al. (2004). Function of the ABC signature sequences in the human multidrug resistance protein 1. Molecular Pharmacology, 65, 1536–1542.

    Article  PubMed  CAS  Google Scholar 

  119. Senior, A. E. (1998). Catalytic mechanism of P-glycoprotein. Acta Physiologica Scandinavica. Supplementum, 643, 213–218.

    PubMed  CAS  Google Scholar 

  120. Senior, A. E., al-Shawi, M. K., & Urbatsch, I. L. (1998). ATPase activity of Chinese hamster P-glycoprotein. Methods in Enzymology, 292, 514–523.

    PubMed  CAS  Google Scholar 

  121. Urbatsch, I. L., Sankaran, B., Weber, J., & Senior, A. E. (1995a). P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. Journal of Biological Chemistry, 270, 19383–19390.

    Article  PubMed  CAS  Google Scholar 

  122. Urbatsch, I. L., Sankaran, B., Bhagat, S., & Senior, A. E. (1995b). Both P-glycoprotein nucleotide-binding sites are catalytically active. Journal of Biological Chemistry, 270, 26956–26961.

    Article  PubMed  CAS  Google Scholar 

  123. Senior, A. E., & Bhagat, S. (1998). P-glycoprotein shows strong catalytic cooperativity between the two nucleotide sites. Biochemistry, 37, 831–836.

    Article  PubMed  CAS  Google Scholar 

  124. Carrier, I., Julien, M., & Gros, P. (2003). Analysis of catalytic carboxylate mutants E552Q and E1197Q suggests asymmetric ATP hydrolysis by the two nucleotide-binding domains of P-glycoprotein. Biochemistry, 42, 12875–12885.

    Article  PubMed  CAS  Google Scholar 

  125. Urbatsch, I. L., Beaudet, L., Carrier, I., & Gros, P. (1998). Mutations in either nucleotide-binding site of P-glycoprotein (Mdr3) prevent vanadate trapping of nucleotide at both sites. Biochemistry, 37, 4592–4602.

    Article  PubMed  CAS  Google Scholar 

  126. Urbatsch, I. L., Julien, M., Carrier, I., Rousseau, M. E., Cayrol, R., & Gros, P. (2000). Mutational analysis of conserved carboxylate residues in the nucleotide binding sites of P-glycoprotein. Biochemistry, 39, 14138–14149.

    Article  PubMed  CAS  Google Scholar 

  127. Azzaria, M., Schurr, E., & Gros, P. (1989). Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Molecular and Cellular Biology, 9, 5289–5297.

    PubMed  CAS  Google Scholar 

  128. Senior, A. E., al-Shawi, M. K., & Urbatsch, I. L. (1995). The catalytic cycle of P-glycoprotein. FEBS Letters, 377, 285–289.

    Article  PubMed  CAS  Google Scholar 

  129. Sauna, Z. E., & Ambudkar, S. V. (2000). Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 97, 2515–2520.

    Article  PubMed  CAS  Google Scholar 

  130. Sauna, Z. E., & Ambudkar, S. V. (2001). Characterization of the catalytic cycle of ATP hydrolysis by human P- glycoprotein. The two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes. Journal of Biological Chemistry, 276, 11653–11661.

    Article  PubMed  CAS  Google Scholar 

  131. Hrycyna, C. A., Ramachandra, M., Germann, U. A., Cheng, P. W., Pastan, I., & Gottesman, M. M. (1999). Both ATP sites of human P-glycoprotein are essential but not symmetric. Biochemistry, 38, 13887–13899.

    Article  PubMed  CAS  Google Scholar 

  132. Vigano, C., Julien, M., Carrier, I., Gros, P., & Ruysschaert, J. M. (2002). Structural and functional asymmetry of the nucleotide-binding domains of P-glycoprotein investigated by attenuated total reflection Fourier transform infrared spectroscopy. Journal of Biological Chemistry, 277, 5008–5016.

    Article  PubMed  CAS  Google Scholar 

  133. Beaudet, L., & Gros, P. (1995). Functional dissection of P-glycoprotein nucleotide-binding domains in chimeric and mutant proteins. Modulation of drug resistance profiles. Journal of Biological Chemistry, 270, 17159–17170.

    Article  PubMed  CAS  Google Scholar 

  134. Matsuo, M., Kioka, N., Amachi, T., & Ueda, K. (1999). ATP binding properties of the nucleotide-binding folds of SUR1. Journal of Biological Chemistry, 274, 37479–37482.

    Article  PubMed  CAS  Google Scholar 

  135. Matsuo, M., Tanabe, K., Kioka, N., Amachi, T., & Ueda, K. (2000). Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes, SUR1, SUR2A, and SUR2B. Journal of Biological Chemistry, 275, 28757–28763.

    Article  PubMed  CAS  Google Scholar 

  136. Szabo, K., Szakacs, G., Hegeds, T., & Sarkadi, B. (1999). Nucleotide occlusion in the human cystic fibrosis transmembrane conductance regulator. Different patterns in the two nucleotide binding domains. Journal of Biological Chemistry, 274, 12209–12212.

    Article  PubMed  CAS  Google Scholar 

  137. Aleksandrov, L., Mengos, A., Chang, X. B., Aleksandrov, A., & Riordan, J. R. (2001). Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. Journal of Biological Chemistry, 276, 12918–12923.

    Article  PubMed  CAS  Google Scholar 

  138. Aleksandrov, L., Aleksandrov, A. A., Chang, X. B., & Riordan, J. R. (2002). The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover. Journal of Biological Chemistry, 277, 15419–15425.

    Article  PubMed  CAS  Google Scholar 

  139. Cui, L., Hou, Y. X., Riordan, J. R., & Chang, X. B. (2001). Mutations of the Walker B motif in the first nucleotide binding domain of multidrug resistance protein MRP1 prevent conformational maturation. Archives of Biochemistry and Biophysics, 392, 153–161.

    Article  PubMed  CAS  Google Scholar 

  140. Nagata, K., Nishitani, M., Matsuo, M., Kioka, N., Amachi, T., & Ueda, K. (2000). Nonequivalent nucleotide trapping in the two nucleotide binding folds of the human multidrug resistance protein MRP1. Journal of Biological Chemistry, 275, 17626–17630.

    Article  PubMed  CAS  Google Scholar 

  141. Hou, Y. X., Cui, L., Riordan, J. R., & Chang, X. B. (2002). ATP binding to the first nucleotide-binding domain of multidrug resistance protein MRP1 increases binding and hydrolysis of ATP and trapping of ADP at the second domain. Journal of Biological Chemistry, 277, 5110–5119.

    Article  PubMed  CAS  Google Scholar 

  142. Hou, Y. X., Riordan, J. R., & Chang, X. B. (2003). ATP binding, not hydrolysis, at the first nucleotide-binding domain of multidrug resistance-associated protein MRP1 enhances ADP.Vi trapping at the second domain. Journal of Biological Chemistry, 278, 3599–3605.

    Article  PubMed  CAS  Google Scholar 

  143. Yang, R., Cui, L., Hou, Y.-X., Riordan, J. R., & Chang, X. B. (2003). ATP binding to the first nucleotide binding domain of multidrug resistance-associated protein plays a regulatory role at low nucleotide concentration, whereas ATP hydrolysis at the second plays a dominant role in ATP-dependent leukotriene C4 transport. Journal of Biological Chemistry, 278, 30764–30771.

    Article  PubMed  CAS  Google Scholar 

  144. Yang, R., McBride, A., Hou, Y. X., Goldberg, A., & Chang, X. B. (2005). Nucleotide dissociation from NBD1 promotes solute transport by MRP1. Biochimica et Biophysica Acta, 1668, 248–261.

    PubMed  CAS  Google Scholar 

  145. Taguchi, Y., Yoshida, A., Takada, Y., Komano, T., & Ueda, K. (1997). Anti-cancer drugs and glutathione stimulate vanadate-induced trapping of nucleotide in multidrug resistance-associated protein (MRP). FEBS Letters, 401, 11–14.

    Article  PubMed  CAS  Google Scholar 

  146. Mao, Q., Leslie, E. M., Deeley, R. G., & Cole, S. P. (1999). ATPase activity of purified and reconstituted multidrug resistance protein MRP1 from drug-selected H69AR cells. Biochimica et Biophysica Acta, 1461, 69–82.

    PubMed  CAS  Google Scholar 

  147. Manciu, L., Chang, X. B., Riordan, J. R., Buyse, F., & Ruysschaert, J. M. (2001). Nucleotide-induced conformational changes in the human multidrug resistance protein MRP1 are related to the capacity of chemotherapeutic drugs to accumulate or not in resistant cells. FEBS Letters, 493, 31–35.

    Article  PubMed  CAS  Google Scholar 

  148. Buyse, F., Hou, Y. X., Vigano, C., Zhao, Q., Ruysschaert, J. M., & Chang, X. B. (2006). Replacement of the positively charged Walker A lysine residue with a hydrophobic leucine residue and conformational alterations caused by this mutation in MRP1 impair ATP binding and hydrolysis. Biochemical Journal, 397, 121–130.

    Article  PubMed  CAS  Google Scholar 

  149. Manciu, L., Chang, X. B., Riordan, J. R., & Ruysschaert, J. M. (2000). Multidrug resistance protein MRP1 reconstituted into lipid vesicles: Secondary structure and nucleotide-induced tertiary structure changes. Biochemistry, 39, 13026–13033.

    Article  PubMed  CAS  Google Scholar 

  150. Smith, M. R., Jin, F., & Joshi, I. (2004). Enhanced efficacy of therapy with antisense BCL-2 oligonucleotides plus anti-CD20 monoclonal antibody in scid mouse/human lymphoma xenografts. Molecular Cancer Therapeutics, 3, 1693–1699.

    PubMed  CAS  Google Scholar 

  151. Ramaen, O., Masscheleyn, S., Duffieux, F., Pamlard, O., Oberkampf, M., Lallemand, J. Y., et al. (2003). Biochemical characterization and NMR studies of the nucleotide-binding domain 1 of multidrug-resistance-associated protein 1: Evidence for interaction between ATP and Trp653. Biochemical Journal, 376, 749–756.

    Article  PubMed  CAS  Google Scholar 

  152. Zhao, Q., & Chang, X. B. (2004). Mutation of the aromatic amino acid interacting with adenine moiety of ATP to a polar residue alters the properties of multidrug resistance protein 1. Journal of Biological Chemistry, 279, 48505–48512.

    Article  PubMed  CAS  Google Scholar 

  153. Flens, M. J., Zaman, G. J., van der Valk, P., Izquierdo, M. A., Schroeijers, A. B., Scheffer, G. L., et al. (1996). Tissue distribution of the multidrug resistance protein. American Journal of Pathology, 148, 1237–1247.

    PubMed  CAS  Google Scholar 

  154. St-Pierre, M. V., Serrano, M. A., Macias, R. I., Dubs, U., Hoechli, M., Lauper, U., et al. (2000). Expression of members of the multidrug resistance protein family in human term placenta. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 279, R1495–R1503.

    PubMed  CAS  Google Scholar 

  155. Zaman, G. J., Versantvoort, C. H., Smit, J. J., Eijdems, E. W., de Haas, M., Smith, A. J., et al. (1993). Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Research, 53, 1747–1750.

    PubMed  CAS  Google Scholar 

  156. Nishino, J., Suzuki, H., Sugiyama, D., Kitazawa, T., Ito, K., Hanano, M., et al. (1999). Transepithelial transport of organic anions across the choroid plexus: Possible involvement of organic anion transporter and multidrug resistance-associated protein. Journal of Pharmacology and Experimental Therapeutics, 290, 289–294.

    PubMed  CAS  Google Scholar 

  157. Choudhuri, S., Cherrington, N. J., Li, N., & Klaassen, C. D. (2003). Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metabolism and Disposition, 31, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  158. Atkinson, D. E., Greenwood, S. L., Sibley, C. P., Glazier, J. D., & Fairbairn, L. J. (2003). Role of MDR1 and MRP1 in trophoblast cells, elucidated using retroviral gene transfer. American Journal of Physiology. Cell Physiology, 285, C584–C591.

    PubMed  CAS  Google Scholar 

  159. Brechot, J. M., Hurbain, I., Fajac, A., Daty, N., & Bernaudin, J. F. (1998). Different pattern of MRP localization in ciliated and basal cells from human bronchial epithelium. Journal of Histochemistry and Cytochemistry, 46, 513–517.

    PubMed  CAS  Google Scholar 

  160. Lohoff, M., Prechtl, S., Sommer, F., Roellinghoff, M., Schmitt, E., Gradehandt, G., et al. (1998). A multidrug-resistance protein (MRP)-like transmembrane pump is highly expressed by resting murine T helper (Th) 2, but not Th1 cells, and is induced to equal expression levels in Th1 and Th2 cells after antigenic stimulation in vivo. Journal of Clinical Investigation, 101, 703–710.

    PubMed  CAS  Google Scholar 

  161. Leslie, E. M., Deeley, R. G., & Cole, S. P. (2005). Multidrug resistance proteins: Role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicology and Applied Pharmacology, 204, 216–237.

    Article  PubMed  CAS  Google Scholar 

  162. Nagashige, M., Ushigome, F., Koyabu, N., Hirata, K., Kawabuchi, M., Hirakawa, T., et al. (2003). Basal membrane localization of MRP1 in human placental trophoblast. Placenta, 24, 951–958.

    Article  PubMed  CAS  Google Scholar 

  163. Pascolo, L., Fernetti, C., Pirulli, D., Crovella, S., Amoroso, A., & Tiribelli, C. (2003). Effects of maturation on RNA transcription and protein expression of four MRP genes in human placenta and in BeWo cells. Biochemical and Biophysical Research Communications, 303, 259–265.

    Article  PubMed  CAS  Google Scholar 

  164. Peng, K. C., Cluzeaud, F., Bens, M., Van Huyen, J. P., Wioland, M. A., Lacave, R., et al. (1999). Tissue and cell distribution of the multidrug resistance-associated protein (MRP) in mouse intestine and kidney. Journal of Histochemistry and Cytochemistry, 47, 757–768.

    PubMed  CAS  Google Scholar 

  165. St-Pierre, M. V., Stallmach, T., Freimoser Grundschober, A., Dufour, J. F., Serrano, M. A., Marin, J. J., et al. (2004). Temporal expression profiles of organic anion transport proteins in placenta and fetal liver of the rat. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287, R1505–R1516.

    Article  PubMed  CAS  Google Scholar 

  166. Tribull, T. E., Bruner, R. H., & Bain, L. J. (2003). The multidrug resistance-associated protein 1 transports methoxychlor and protects the seminiferous epithelium from injury. Toxicology Letters, 142, 61–70.

    Article  PubMed  CAS  Google Scholar 

  167. Wijnholds, J., Scheffer, G. L., van der Valk, M., van der Valk, P., Beijnen, J. H., Scheper, R. J., et al. (1998). Multidrug resistance protein 1 protects the oropharyngeal mucosal layer and the testicular tubules against drug-induced damage. Journal of Experimental Medicine, 188, 797–808.

    Article  PubMed  CAS  Google Scholar 

  168. Wright, S. R., Boag, A. H., Valdimarsson, G., Hipfner, D. R., Campling, B. G., Cole, S. P., et al. (1998). Immunohistochemical detection of multidrug resistance protein in human lung cancer and normal lung. Clinical Cancer Research, 4, 2279–2289.

    PubMed  CAS  Google Scholar 

  169. Deeley, R. G., Westlake, C., & Cole, S. P. (2006). Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiological Reviews, 86, 849–899.

    Article  PubMed  CAS  Google Scholar 

  170. Wijnholds, J., deLange, E. C., Scheffer, G. L., van den Berg, D. J., Mol, C. A., van der Valk, M., et al. (2000). Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. Journal of Clinical Investigation, 105, 279–285.

    PubMed  CAS  Google Scholar 

  171. Mercier, C., Masseguin, C., Roux, F., Gabrion, J., & Scherrmann, J. M. (2004). Expression of P-glycoprotein (ABCB1) and Mrp1 (ABCC1) in adult rat brain: Focus on astrocytes. Brain Research, 1021, 32–40.

    Article  PubMed  CAS  Google Scholar 

  172. de Lange, E. C. (2004). Potential role of ABC transporters as a detoxification system at the blood-CSF barrier. Advanced Drug Delivery Reviews, 56, 1793–1809.

    Article  PubMed  CAS  Google Scholar 

  173. Bart, J., Hollema, H., Groen, H. J., de Vries, E. G., Hendrikse, N. H., Sleijfer, D. T., et al. (2004). The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. European Journal of Cancer, 40, 2064–2070.

    Article  PubMed  CAS  Google Scholar 

  174. Cha, S. H., Sekine, T., Fukushima, J. I., Kanai, Y., Kobayashi, Y., Goya, T., et al. (2001). Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Molecular Pharmacology, 59, 1277–1286.

    PubMed  CAS  Google Scholar 

  175. Schaub, T. P., Kartenbeck, J., Konig, J., Spring, H., Dorsam, J., Staehler, G., et al. (1999). Expression of the MRP2 gene-encoded conjugate export pump in human kidney proximal tubules and in renal cell carcinoma. Journal of the American Society of Nephrology, 10, 1159–1169.

    PubMed  CAS  Google Scholar 

  176. Evers, R., Zaman, G. J., van Deemter, L., Jansen, H., Calafat, J., Oomen, L. C., et al. (1996). Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. Journal of Clinical Investigation, 97, 1211–1218.

    PubMed  CAS  Google Scholar 

  177. Hipfner, D. R., Gauldie, S. D., Deeley, R. G., & Cole, S. P. (1994). Detection of the M(r) 190,000 multidrug resistance protein, MRP, with monoclonal antibodies. Cancer Research, 54, 5788–5792.

    PubMed  CAS  Google Scholar 

  178. Roelofsen, H., Vos, T. A., Schippers, I. J., Kuipers, F., Koning, H., Moshage, H., et al. (1997). Increased levels of the multidrug resistance protein in lateral membranes of proliferating hepatocyte-derived cells. Gastroenterology, 112, 511–521.

    Article  PubMed  CAS  Google Scholar 

  179. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., & Willingham, M. C. (1987). Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proceedings of the National Academy of Sciences of the United States of America, 84, 7735–7738.

    Article  PubMed  CAS  Google Scholar 

  180. Kartenbeck, J., Leuschner, U., Mayer, R., & Keppler, D. (1996). Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin–Johnson syndrome. Hepatology, 23, 1061–1066.

    PubMed  CAS  Google Scholar 

  181. Maliepaard, M., Scheffer, G. L., Faneyte, I. F., van Gastelen, M. A., Pijnenborg, A. C., Schinkel, A. H., et al. (2001). Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Research, 61, 3458–3464.

    PubMed  CAS  Google Scholar 

  182. Hoogeveen, A. T., Keulemans, J., Willemsen, R., Scholte, B. J., Bijman, J., Edixhoven, M. J., et al. (1991). Immunological localization of cystic fibrosis candidate gene products. Experimental Cell Research, 193, 435–437.

    Article  PubMed  CAS  Google Scholar 

  183. Marino, C. R., Matovcik, L. M., Gorelick, F. S., & Cohn, J. A. (1991). Localization of the cystic fibrosis transmembrane conductance regulator in pancreas. Journal of Clinical Investigation, 88, 712–716.

    Article  PubMed  CAS  Google Scholar 

  184. Crawford, I., Maloney, P. C., Zeitlin, P. L., Guggino, W. B., Hyde, S. C., Turley, H., et al. (1991). Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proceedings of the National Academy of Sciences of the United States of America, 88, 9262–9266.

    Article  PubMed  CAS  Google Scholar 

  185. Sparreboom, A., van Asperen, J., Mayer, U., Schinkel, A. H., Smit, J. W., Meijer, D. K., et al. (1997). Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proceedings of the National Academy of Sciences of the United States of America, 94, 2031–2035.

    Article  PubMed  CAS  Google Scholar 

  186. Lankas, G. R., Wise, L. D., Cartwright, M. E., Pippert, T., & Umbenhauer, D. R. (1998). Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reproductive Toxicology, 12, 457–463.

    Article  PubMed  CAS  Google Scholar 

  187. Lorico, A., Rappa, G., Finch, R. A., Yang, D., Flavell, R. A., & Sartorelli, A. C. (1997). Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Research, 57, 5238–5242.

    PubMed  CAS  Google Scholar 

  188. Rappa, G., Finch, R. A., Sartorelli, A. C., & Lorico, A. (1999). New insights into the biology and pharmacology of the multidrug resistance protein (MRP) from gene knockout models. Biochemical Pharmacology, 58, 557–562.

    Article  PubMed  CAS  Google Scholar 

  189. Rao, V. V., Dahlheimer, J. L., Bardgett, M. E., Snyder, A. Z., Finch, R. A., Sartorelli, A. C., et al. (1999). Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proceedings of the National Academy of Sciences of the United States of America, 96, 3900–3905.

    Article  PubMed  CAS  Google Scholar 

  190. Mayatepek, E. (2000). Leukotriene C4 synthesis deficiency: A member of a probably underdiagnosed new group of neurometabolic diseases. European Journal of Pediatrics, 159, 811–818.

    Article  PubMed  CAS  Google Scholar 

  191. Scoggan, K. A., Jakobsson, P. J., & Ford-Hutchinson, A. W. (1997). Production of leukotriene C4 in different human tissues is attributable to distinct membrane bound biosynthetic enzymes. Journal Biological Chemistry, 272, 10182–10187.

    Article  CAS  Google Scholar 

  192. Schroder, O., Sjostrom, M., Qiu, H., Jakobsson, P. J., & Haeggstrom, J. Z. (2005). Microsomal glutathione S-transferases: Selective up-regulation of leukotriene C4 synthase during lipopolysaccharide-induced pyresis. Cellular and Molecular Life Sciences, 62, 87–94.

    Article  PubMed  CAS  Google Scholar 

  193. Shimada, K., Navarro, J., Goeger, D. E., Mustafa, S. B., Weigel, P. H., & Weinman, S. A. (1998). Expression and regulation of leukotriene-synthesis enzymes in rat liver cells. Hepatology, 28, 1275–1281.

    Article  PubMed  CAS  Google Scholar 

  194. Dekkers, D. W., Comfurius, P., Schroit, A. J., Bevers, E. M., & Zwaal, R. F. (1998). Transbilayer movement of NBD-labeled phospholipids in red blood cell membranes: Outward-directed transport by the multidrug resistance protein 1 (MRP1). Biochemistry, 37, 14833–14837.

    Article  PubMed  CAS  Google Scholar 

  195. Borst, P., Zelcer, N., & van Helvoort, A. (2000). ABC transporters in lipid transport. Biochimica et Biophysica Acta, 1486, 128–144.

    PubMed  CAS  Google Scholar 

  196. Dekkers, D. W., Comfurius, P., van Gool, R. G., Bevers, E. M., & Zwaal, R. F. (2000). Multidrug resistance protein 1 regulates lipid asymmetry in erythrocyte membranes. Biochemical Journal, 350(Pt 2), 531–535.

    Article  PubMed  CAS  Google Scholar 

  197. Raggers, R. J., van Helvoort, A., Evers, R., & van Meer, G. (1999). The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. Journal of Cell Science, 112(Pt 3), 415–422.

    PubMed  CAS  Google Scholar 

  198. Mannechez, A., Collet, B., Payen, L., Lecureur, V., Fardel, O., Le Moyec, L., et al. (2001). Differentiation of the P-gp and MRP1 multidrug resistance systems by mobile lipid 1H-NMR spectroscopy and phosphatidylserine externalization. Anticancer Research, 21, 3915–3919.

    PubMed  CAS  Google Scholar 

  199. Kamp, D., & Haest, C. W. (1998). Evidence for a role of the multidrug resistance protein (MRP) in the outward translocation of NBD-phospholipids in the erythrocyte membrane. Biochimica et Biophysica Acta, 1372, 91–101.

    PubMed  CAS  Google Scholar 

  200. Sohnius, A., Kamp, D., & Haest, C. W. (2003). ATP and GSH dependence of MRP1-mediated outward translocation of phospholipid analogs in the human erythrocyte membrane. Molecular Membrane Biology, 20, 299–305.

    Article  PubMed  CAS  Google Scholar 

  201. Huang, Z., Chang, X., Riordan, J. R., & Huang, Y. (2004). Fluorescent modified phosphatidylcholine floppase activity of reconstituted multidrug resistance-associated protein MRP1. Biochimica et Biophysica Acta, 1660, 155–163.

    PubMed  CAS  Google Scholar 

  202. Kruh, G. D., Chan, A., Myers, K., Gaughan, K., Miki, T., & Aaronson, S. A. (1994). Expression complementary DNA library transfer establishes mrp as a multidrug resistance gene. Cancer Research, 54, 1649–1652.

    PubMed  CAS  Google Scholar 

  203. Breuninger, L. M., Paul, S., Gaughan, K., Miki, T., Chan, A., Aaronson, S. A., et al. (1995). Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Research, 55, 5342–5347.

    PubMed  CAS  Google Scholar 

  204. Schneider, E., Horton, J. K., Yang, C. H., Nakagawa, M., & Cowan, K. H. (1994). Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Research, 54, 152–158.

    PubMed  CAS  Google Scholar 

  205. Zijlstra, J. G., de Vries, E. G., & Mulder, N. H. (1987). Multifactorial drug resistance in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Research, 47, 1780–1784.

    PubMed  CAS  Google Scholar 

  206. Eijdems, E. W., De Haas, M., Coco-Martin, J. M., Ottenheim, C. P., Zaman, G. J., Dauwerse, H. G., et al. (1995). Mechanisms of MRP over-expression in four human lung-cancer cell lines and analysis of the MRP amplicon. International Journal of Cancer, 60, 676–684.

    Article  CAS  Google Scholar 

  207. Coley, H. M., Workman, P., & Twentyman, P. R. (1991). Retention of activity by selected anthracyclines in a multidrug resistant human large cell lung carcinoma line without P-glycoprotein hyperexpression. Bristish Journal of Cancer, 63, 351–357.

    CAS  Google Scholar 

  208. Versantvoort, C. H., Broxterman, H. J., Pinedo, H. M., de Vries, E. G., Feller, N., Kuiper, C. M., et al. (1992). Energy-dependent processes involved in reduced drug accumulation in multidrug-resistant human lung cancer cell lines without P-glycoprotein expression. Cancer Research, 52, 17–23.

    PubMed  CAS  Google Scholar 

  209. van Triest, B., Pinedo, H. M., Telleman, F., van der Wilt, C. L., Jansen, G., & Peters, G. J. (1997). Cross-resistance to antifolates in multidrug resistant cell lines with P-glycoprotein or multidrug resistance protein expression. Biochemical Pharmacology, 53, 1855–1866.

    Article  PubMed  Google Scholar 

  210. Flens, M. J., Scheffer, G. L., van der Valk, P., Broxterman, H. J., Eijdems, E. W., Huysmans, A. C., et al. (1997). Identification of novel drug resistance-associated proteins by a panel of rat monoclonal antibodies. International Journal of Cancer, 73, 249–257.

    Article  CAS  Google Scholar 

  211. Politi, P. M., & Sinha, B. K. (1989). Role of differential drug uptake, efflux, and binding of etoposide in sensitive and resistant human tumor cell lines: Implications for the mechanisms of drug resistance. Molecular Pharmacology, 35, 271–278.

    PubMed  CAS  Google Scholar 

  212. Gillet, J. P., Efferth, T., Steinbach, D., Hamels, J., de Longueville, F., Bertholet, V., et al. (2004). Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Research, 64, 8987–8993.

    Article  PubMed  CAS  Google Scholar 

  213. Slovak, M. L., Hoeltge, G. A., Dalton, W. S., & Trent, J. M. (1988). Pharmacological and biological evidence for differing mechanisms of doxorubicin resistance in two human tumor cell lines. Cancer Research, 48, 2793–2797.

    PubMed  CAS  Google Scholar 

  214. Denoyer, D., Perek, N., Le Jeune, N., Frere, D., & Dubois, F. (2003). The multidrug resistance of in vitro tumor cell lines derived from human breast carcinoma MCF-7 does not influence pentavalent technetium-99m-dimercaptosuccinic Acid uptake. Cancer Biotherapy & Radiopharmaceuticals, 18, 791–801.

    Article  CAS  Google Scholar 

  215. Sumizawa, T., Chuman, Y., Sakamoto, H., Iemura, K., Almquist, K. C., Deeley, R. G., et al. (1994). Non-P-glycoprotein-mediated multidrug-resistant human KB cells selected in medium containing adriamycin, cepharanthine, and mezerein. Somatic Cell and Molecular Genetics, 20, 423–435.

    Article  PubMed  CAS  Google Scholar 

  216. Chauvier, D., Morjani, H., & Manfait, M. (2002). Homocamptothecin-daunorubicin association overcomes multidrug-resistance in breast cancer MCF7 cells. Breast Cancer Research and Treatment, 73, 113–125.

    Article  PubMed  CAS  Google Scholar 

  217. Larkin, A., O’Driscoll, L., Kennedy, S., Purcell, R., Moran, E., Crown, J., et al. (2004). Investigation of MRP-1 protein and MDR-1 P-glycoprotein expression in invasive breast cancer: A prognostic study. International Journal of Cancer, 112, 286–294.

    Article  CAS  Google Scholar 

  218. Rybarova, S., Hodorova, I., Hajdukova, M., Schmidtova, K., Mojzis, J., Kajo, K., et al. (2006). Expression of MDR proteins in breast cancer and its correlation with some clinical and pathological parameters. Neoplasma, 53, 128–135.

    PubMed  CAS  Google Scholar 

  219. Burger, H., Foekens, J. A., Look, M. P., Meijer-van Gelder, M. E., Klijn, J. G., Wiemer, E. A., et al. (2003). RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: Correlation with chemotherapeutic response. Clinical Cancer Research, 9, 827–836.

    PubMed  CAS  Google Scholar 

  220. Nooter, K., Brutel de la Riviere, G., Look, M. P., van Wingerden, K. E., Henzen-Logmans, S. C., Scheper, R. J., et al. (1997). The prognostic significance of expression of the multidrug resistance-associated protein (MRP) in primary breast cancer. British Journal of Cancer, 76, 486–493.

    PubMed  CAS  Google Scholar 

  221. Charpin, C., Vielh, P., Duffaud, F., Devictor, B., Andrac, L., Lavaut, M. N., et al. (1994). Quantitative immunocytochemical assays of P-glycoprotein in breast carcinomas: Correlation to messenger RNA expression and to immunohistochemical prognostic indicators. Journal of the National Cancer Institute, 86, 1539–1545.

    Article  PubMed  CAS  Google Scholar 

  222. Filipits, M., Suchomel, R. W., Dekan, G., Haider, K., Valdimarsson, G., Depisch, D., et al. (1996). MRP and MDR1 gene expression in primary breast carcinomas. Clinical Cancer Research, 2, 1231–1237.

    PubMed  CAS  Google Scholar 

  223. Rudas, M., Filipits, M., Taucher, S., Stranzl, T., Steger, G. G., Jakesz, R., et al. (2003). Expression of MRP1, LRP and Pgp in breast carcinoma patients treated with preoperative chemotherapy. Breast Cancer Research and Treatment, 81, 149–157.

    Article  PubMed  CAS  Google Scholar 

  224. Cole, S. P., Downes, H. F., Mirski, S. E., & Clements, D. J. (1990). Alterations in glutathione and glutathione-related enzymes in a multidrug-resistant small cell lung cancer cell line. Molecular Pharmacology, 37, 192–197.

    PubMed  CAS  Google Scholar 

  225. Campling, B. G., Baer, K., Baker, H. M., Lam, Y. M., & Cole, S. P. (1993). Do glutathione and related enzymes play a role in drug resistance in small cell lung cancer cell lines? British Journal of Cancer, 68, 327–335.

    PubMed  CAS  Google Scholar 

  226. Rappa, G., Gamcsik, M. P., Mitina, R. L., Baum, C., Fodstad, O., & Lorico, A. (2003). Retroviral transfer of MRP1 and gamma-glutamyl cysteine synthetase modulates cell sensitivity to L-buthionine-S,R-sulphoximine (BSO): New rationale for the use of BSO in cancer therapy. European Journal of Cancer, 39, 120–128.

    Article  PubMed  CAS  Google Scholar 

  227. Schneider, E., Yamazaki, H., Sinha, B. K., & Cowan, K. H. (1995). Buthionine sulphoximine-mediated sensitisation of etoposide-resistant human breast cancer MCF7 cells overexpressing the multidrug resistance- associated protein involves increased drug accumulation. British Journal of Cancer, 71, 738–743.

    PubMed  CAS  Google Scholar 

  228. Versantvoort, C. H., Broxterman, H. J., Bagrij, T., Scheper, R. J., & Twentyman, P. R. (1995). Regulation by glutathione of drug transport in multidrug-resistant human lung tumour cell lines overexpressing multidrug resistance- associated protein. British Journal of Cancer, 72, 82–89.

    PubMed  CAS  Google Scholar 

  229. Zaman, G. J., Lankelma, J., van Tellingen, O., Beijnen, J., Dekker, H., Paulusma, C., et al. (1995). Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proceedings of the National Academy of Sciences of the United States of America, 92, 7690–7694.

    Article  PubMed  CAS  Google Scholar 

  230. Benlloch, M., Ortega, A., Ferrer, P., Segarra, R., Obrador, E., Asensi, M., et al. (2005). Acceleration of glutathione efflux and inhibition of gamma-glutamyltranspeptidase sensitize metastatic B16 melanoma cells to endothelium-induced cytotoxicity. Journal of Biological Chemistry, 280, 6950–6959.

    Article  PubMed  CAS  Google Scholar 

  231. Rappa, G., Lorico, A., Flavell, R. A., & Sartorelli, A. C. (1997). Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Research, 57, 5232–5237.

    PubMed  CAS  Google Scholar 

  232. Leslie, E. M., Haimeur, A., & Waalkes, M. P. (2004). Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. Journal of Biological Chemistry, 279, 32700–32708.

    Article  PubMed  CAS  Google Scholar 

  233. Trompier, D., Chang, X. B., Barattin, R., du Moulinet D’Hardemare, A., Di Pietro, A., & Baubichon-Cortay, H. (2004). Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1. Cancer Research, 64, 4950–4956.

    Article  PubMed  CAS  Google Scholar 

  234. Majumder, S., Dutta, P., Mookerjee, A., & Choudhuri, S. K. (2006). The role of a novel copper complex in overcoming doxorubicin resistance in Ehrlich ascites carcinoma cells in vivo. Chemico-biological Interactions, 159, 90–103.

    Article  PubMed  CAS  Google Scholar 

  235. Salerno, M., Loechariyakul, P., Saengkhae, C., & Garnier-Suillerot, A. (2004). Relation between the ability of some compounds to modulate the MRP1-mediated efflux of glutathione and to inhibit the MRPl-mediated efflux of daunorubicin. Biochemical Pharmacology, 68, 2159–2165.

    Article  PubMed  CAS  Google Scholar 

  236. Hu, K., & Morris, M. E. (2004). Effects of benzyl-, phenethyl-, and alpha-naphthyl isothiocyanates on P-glycoprotein- and MRP1-mediated transport. Journal of Pharmaceutical Sciences, 93, 1901–1911.

    Article  PubMed  CAS  Google Scholar 

  237. Gekeler, V., Ise, W., Sanders, K. H., Ulrich, W. R., & Beck, J. (1995). The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. Biochemical and Biophysical Research Communications, 208, 345–352.

    Article  PubMed  CAS  Google Scholar 

  238. Vanhoefer, U., Cao, S., Minderman, H., Toth, K., Skenderis, B. S. 2nd, Slovak, M. L., et al. (1996). d,l-buthionine-(S,R)-sulfoximine potentiates in vivo the therapeutic efficacy of doxorubicin against multidrug resistance protein-expressing tumors. Clinical Cancer Research, 2, 1961–1968.

    PubMed  CAS  Google Scholar 

  239. Seo, T., Urasaki, Y., Takemura, H., & Ueda, T. (2005). Arsenic trioxide circumvents multidrug resistance based on different mechanisms in human leukemia cell lines. Anticancer Research, 25, 991–998.

    PubMed  CAS  Google Scholar 

  240. Akan, I., Akan, S., Akca, H., Savas, B., & Ozben, T. (2005). Multidrug resistance-associated protein 1 (MRP1) mediated vincristine resistance: Effects of N-acetylcysteine and Buthionine sulfoximine. Cancer Cell International, 5, 22.

    Article  PubMed  CAS  Google Scholar 

  241. Akan, I., Akan, S., Akca, H., Savas, B., & Ozben, T. (2004). N-acetylcysteine enhances multidrug resistance-associated protein 1 mediated doxorubicin resistance. European Journal of Clinical Investigation, 34, 683–689.

    Article  PubMed  CAS  Google Scholar 

  242. Benderra, Z., Trussardi, A., Morjani, H., Villa, A. M., Doglia, S. M., & Manfait, M. (2000). Regulation of cellular glutathione modulates nuclear accumulation of daunorubicin in human MCF7 cells overexpressing multidrug resistance associated protein. European Journal of Cancer, 30, 428–434.

    Article  Google Scholar 

  243. Le Jeune, N., Perek, N., Denoyer, D., & Dubois, F. (2004). Influence of glutathione depletion on plasma membrane cholesterol esterification and on Tc-99m-sestamibi and Tc-99m-tetrofosmin uptakes: A comparative study in sensitive U-87-MG and multidrug-resistant MRP1 human glioma cells. Cancer Biotherapy & Radiopharmaceuticals, 19, 411–421.

    Google Scholar 

  244. Perek, N., Koumanov, F., Denoyer, D., Boudard, D., & Dubois, F. (2002). Modulation of the multidrug resistance of glioma by glutathione levels depletion-interaction with Tc-99M-Sestamibi and Tc-99M-Tetrofosmin. Cancer Biotherapy & Radiopharmaceuticals, 17, 291–302.

    Article  CAS  Google Scholar 

  245. Sharp, S. Y., Smith, V., Hobbs, S., & Kelland, L. R. (1998). Lack of a role for MRP1 in platinum drug resistance in human ovarian cancer cell lines. British Journal of Cancer, 78, 175–180.

    Article  PubMed  CAS  Google Scholar 

  246. Chuman, Y., Chen, Z. S., Seto, K., Sumizawa, T., Furukawa, T., Tani, A., et al. (1998). Reversal of MRP-mediated vincristine resistance in KB cells by buthionine sulfoximine in combination with PAK-104P. Cancer Letter, 129, 69–76.

    Article  CAS  Google Scholar 

  247. Buchler, M., Konig, J., Brom, M., Kartenbeck, J., Spring, H., Horie, T., et al. (1996). cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. Journal of Biological Chemistry, 271, 15091–15098.

    Article  PubMed  CAS  Google Scholar 

  248. Paulusma, C. C., Bosma, P. J., Zaman, G. J., Bakker, C. T., Otter, M., Scheffer, G. L., et al. (1996). Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science, 271, 1126–1128.

    Article  PubMed  CAS  Google Scholar 

  249. Kool, M., de Haas, M., Scheffer, G. L., Scheper, R. J., van Eijk, M. J., Juijn, J. A., et al. (1997). Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Research, 57, 3537–3547.

    PubMed  CAS  Google Scholar 

  250. Kool, M., van der Linden, M., de Haas, M., Baas, F., & Borst, P. (1999). Expression of human MRP6, a homologue of the multidrug resistance protein gene MRP1, in tissues and cancer cells. Cancer Research, 59, 175–182.

    PubMed  CAS  Google Scholar 

  251. Hopper, E., Belinsky, M. G., Zeng, H., Tosolini, A., Testa, J. R., & Kruh, G. D. (2001). Analysis of the structure and expression pattern of MRP7 (ABCC10), a new member of the MRP subfamily. Cancer Letter, 162, 181–191.

    Article  CAS  Google Scholar 

  252. Bera, T. K., Lee, S., Salvatore, G., Lee, B., & Pastan, I. (2001). MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Molecular Medicine, 7, 509–516.

    PubMed  CAS  Google Scholar 

  253. Tammur, J., Prades, C., Arnould, I., Rzhetsky, A., Hutchinson, A., Adachi, M., et al. (2001). Two new genes from the human ATP-binding cassette transporter superfamily, ABCC11 and ABCC12, tandemly duplicated on chromosome 16q12. Gene, 273, 89–96.

    Article  PubMed  CAS  Google Scholar 

  254. Yabuuchi, H., Takayanagi, S., Yoshinaga, K., Taniguchi, N., Aburatani, H., & Ishikawa, T. (2002). ABCC13, an unusual truncated ABC transporter, is highly expressed in fetal human liver. Biochemical and Biophysical Research Communications, 299, 410–417.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-bao Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Xb. A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1. Cancer Metastasis Rev 26, 15–37 (2007). https://doi.org/10.1007/s10555-007-9041-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9041-7

Keywords

Navigation