Skip to main content

Advertisement

Log in

Cyclooxygenases and lipoxygenases in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer initiation and progression are multistep events that require cell proliferation, migration, extravasation to the blood or lymphatic vessels, arrest to the metastatic site, and ultimately secondary growth. Tumor cell functions at both primary or secondary sites are controlled by many different factors, including growth factors and their receptors, chemokines, nuclear receptors, cell–cell interactions, cell–matrix interactions, as well as oxygenated metabolites of arachidonic acid. The observation that cyclooxygenases and lipoxygenases and their arachidonic acid-derived eicosanoid products (prostanoids and HETEs) are expressed and produced by tumor cells, together with the finding that these enzymes can regulate cell growth, survival, migration, and invasion, has prompted investigators to analyze the roles of these enzymes in cancer progression. In this review, we focus on the contribution of cyclooxygenase- and lipoxygenase-derived eicosanoids to tumor cell function in vitro and in vivo and discuss hope and tribulations of targeting these enzymes for cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

COX:

Cyclooxygenase

LOX:

Lipoxygenase

PGE2 :

Prostaglandin E2

PGI2 :

Prostacyclin

PGF :

Prostaglandin F

TxA2 :

Thromboxane A2

EP:

Prostaglandin E receptor

HK:

Cyclic hemiketal eicosanoid

NSAID:

Nonsteroidal anti-inflammatory drug

LTB4 :

Leukotriene B4

HODE:

Hydroxyoctadecadienoic acid

PGD2 :

Prostaglandin D2

VEGF:

Vascular endothelial growth factor

NF-κB:

Nuclear factor-kappaB

PI3K/Akt:

Phospatidylinositol-3-kinase/Akt

PPAR:

Peroxisome proliferator-activated receptor

TNF:

Tumor necrosis factor

References

  1. Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews Cancer, 10, 181–193.

    PubMed  CAS  Google Scholar 

  2. Williams, C. S., Luongo, C., Radhika, A., Zhang, T., Lamps, L. W., Nanney, L. B., et al. (1996). Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology, 111, 1134–1140.

    PubMed  CAS  Google Scholar 

  3. Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S., & DuBois, R. N. (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107, 1183–1188.

    PubMed  CAS  Google Scholar 

  4. Chen, W. S., Wei, S. J., Liu, J. M., Hsiao, M., Kou-Lin, J., & Yang, W. K. (2001). Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, etodolac. International Journal of Cancer, 91, 894–899.

    CAS  Google Scholar 

  5. Gately, S. (2000). The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Reviews, 19, 19–27.

    PubMed  CAS  Google Scholar 

  6. Gately, S., & Li, W. W. (2004). Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Seminars in Oncology, 31, 2–11.

    PubMed  CAS  Google Scholar 

  7. Rizzo, M. T. (2011). Cyclooxygenase-2 in oncogenesis. Clinica Chimica Acta, 412, 671–687.

    CAS  Google Scholar 

  8. Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., et al. (1996). Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87, 803–809.

    PubMed  CAS  Google Scholar 

  9. Oshima, M., Murai, N., Kargman, S., Arguello, M., Luk, P., Kwong, E., et al. (2001). Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Research, 61, 1733–1740.

    PubMed  CAS  Google Scholar 

  10. Rundhaug, J. E., & Fischer, S. M. (2008). Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochemistry and Photobiology, 84, 322–329.

    PubMed  CAS  Google Scholar 

  11. Stasinopoulos, I., O'Brien, D. R., Wildes, F., Glunde, K., & Bhujwalla, Z. M. (2007). Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells. Molecular Cancer Research, 5, 435–442.

    PubMed  CAS  Google Scholar 

  12. Ghosh, N., Chaki, R., Mandal, V., & Mandal, S. C. (2010). COX-2 as a target for cancer chemotherapy. Pharmacological Reports, 62, 233–244.

    PubMed  CAS  Google Scholar 

  13. Diczfalusy, U., Falardeau, P., & Hammarstrom, S. (1977). Conversion of prostaglandin endoperoxides to C17-hydroxy acids catalyzed by human platelet thromboxane synthase. FEBS Letters, 84, 271–274.

    PubMed  CAS  Google Scholar 

  14. Nakahata, N. (2008). Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacology and Therapeutics, 118, 18–35.

    PubMed  CAS  Google Scholar 

  15. Cathcart, M. C., Gately, K., Cummins, R., Kay, E., O'Byrne, K. J., & Pidgeon, G. P. (2011). Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer. Molecular Cancer, 10, 25.

    PubMed  CAS  Google Scholar 

  16. Huang, R. Y., & Chen, G. G. (2011). Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochimica et Biophysica Acta, 1815, 158–169.

    PubMed  CAS  Google Scholar 

  17. Huang, R. Y., Li, M. Y., Hsin, M. K., Underwood, M. J., Ma, L. T., Mok, T. S., et al. (2011). 4-Methylnitrosamino-1-3-pyridyl-1-butanone (NNK) promotes lung cancer cell survival by stimulating thromboxane A2 and its receptor. Oncogene, 30, 106–116.

    PubMed  CAS  Google Scholar 

  18. Leung, K. C., Li, M. Y., Leung, B. C., Hsin, M. K., Mok, T. S., Underwood, M. J., et al. (2010). Thromboxane synthase suppression induces lung cancer cell apoptosis via inhibiting NF-kappaB. Experimental Cell Research, 316, 3468–3477.

    PubMed  CAS  Google Scholar 

  19. Wei, J., Yan, W., Li, X., Ding, Y., & Tai, H. H. (2010). Thromboxane receptor alpha mediates tumor growth and angiogenesis via induction of vascular endothelial growth factor expression in human lung cancer cells. Lung Cancer, 69, 26–32.

    PubMed  Google Scholar 

  20. Wei, J., Yan, W., Li, X., Chang, W. C., & Tai, H. H. (2007). Activation of thromboxane receptor alpha induces expression of cyclooxygenase-2 through multiple signaling pathways in A549 human lung adenocarcinoma cells. Biochemical Pharmacology, 74, 787–800.

    PubMed  CAS  Google Scholar 

  21. Li, X., & Tai, H. H. (2009). Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis, 30, 1606–1613.

    PubMed  Google Scholar 

  22. Schmidt, N. O., Ziu, M., Cargioli, T., Westphal, M., Giese, A., Black, P. M., et al. (2010). Inhibition of thromboxane synthase activity improves glioblastoma response to alkylation chemotherapy. Transl Oncol, 3, 43–49.

    PubMed  Google Scholar 

  23. Schauff, A. K., Kim, E. L., Leppert, J., Nadrowitz, R., Wuestenberg, R., Brockmann, M. A., et al. (2009). Inhibition of invasion-associated thromboxane synthase sensitizes experimental gliomas to gamma-radiation. Journal of Neuro-Oncology, 91, 241–249.

    PubMed  CAS  Google Scholar 

  24. Cathcart, M. C., Reynolds, J. V., O'Byrne, K. J., & Pidgeon, G. P. (2010). The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer. Biochimica et Biophysica Acta, 1805, 153–166.

    PubMed  CAS  Google Scholar 

  25. Tennis, M. A., Vanscoyk, M., Keith, R. L., & Winn, R. A. (2010). The role of prostacyclin in lung cancer. Translational Research, 155, 57–61.

    PubMed  CAS  Google Scholar 

  26. Keith, R. L., Miller, Y. E., Hudish, T. M., Girod, C. E., Sotto-Santiago, S., Franklin, W. A., et al. (2004). Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice. Cancer Research, 64, 5897–5904.

    PubMed  CAS  Google Scholar 

  27. Keith, R. L., Karoor, V., Mozer, A. B., Hudish, T. M., Le, M., & Miller, Y. E. (2010). Chemoprevention of murine lung cancer by gefitinib in combination with prostacyclin synthase overexpression. Lung Cancer, 70, 37–42.

    PubMed  Google Scholar 

  28. Frigola, J., Munoz, M., Clark, S. J., Moreno, V., Capella, G., & Peinado, M. A. (2005). Hypermethylation of the prostacyclin synthase (PTGIS) promoter is a frequent event in colorectal cancer and associated with aneuploidy. Oncogene, 24, 7320–7326.

    PubMed  CAS  Google Scholar 

  29. Pehlivan, Y., Turkbeyler, I.H., Balakan, O., Sevinc, A., Yilmaz, M., Bakir, K., and Onat, A.M. (2011). Possible anti-metastatic effect of Iloprost in a patient with systemic sclerosis with lung cancer: a case study. Rheumatol Int (in press).

  30. Laubli, H., & Borsig, L. (2010). Selectins as mediators of lung metastasis. Cancer Microenvironment, 3, 97–105.

    PubMed  CAS  Google Scholar 

  31. Mohle, R., Green, D., Moore, M. A., Nachman, R. L., & Rafii, S. (1997). Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings of the National Academy of Sciences of the United States of America, 94, 663–668.

    PubMed  CAS  Google Scholar 

  32. Tennis, M. A., Van Scoyk, M., Heasley, L. E., Vandervest, K., Weiser-Evans, M., Freeman, S., et al. (2010). Prostacyclin inhibits non-small cell lung cancer growth by a frizzled 9-dependent pathway that is blocked by secreted frizzled-related protein 1. Neoplasia, 12, 244–253.

    PubMed  CAS  Google Scholar 

  33. Nemenoff, R., Meyer, A. M., Hudish, T. M., Mozer, A. B., Snee, A., Narumiya, S., et al. (2008). Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of peroxisomal proliferator-activated receptor γ. Cancer Prevention Research (Philadelphia, Pa.), 1, 349–356.

    CAS  Google Scholar 

  34. Hata, A. N., Lybrand, T. P., & Breyer, R. M. (2005). Identification of determinants of ligand binding affinity and selectivity in the prostaglandin D2 receptor CRTH2. Journal of Biological Chemistry, 280, 32442–32451.

    PubMed  CAS  Google Scholar 

  35. Hirai, H., Abe, H., Tanaka, K., Takatsu, K., Sugamura, K., Nakamura, M., et al. (2003). Gene structure and functional properties of mouse CRTH2, a prostaglandin D2 receptor. Biochemical and Biophysical Research Communications, 307, 797–802.

    PubMed  CAS  Google Scholar 

  36. Wright, D. H., Nantel, F., Metters, K. M., & Ford-Hutchinson, A. W. (1999). A novel biological role for prostaglandin D2 is suggested by distribution studies of the rat DP prostanoid receptor. European Journal of Pharmacology, 377, 101–115.

    PubMed  CAS  Google Scholar 

  37. Ragolia, L., Palaia, T., Hall, C. E., Klein, J., & Buyuk, A. (2010). Diminished lipocalin-type prostaglandin D(2) synthase expression in human lung tumors. Lung Cancer, 70, 103–109.

    PubMed  Google Scholar 

  38. Takeda, K., Takahashi, N. H., Yoshizawa, M., & Shibahara, S. (2010). Lipocalin-type prostaglandin D synthase as a regulator of the retinoic acid signalling in melanocytes. Journal of Biochemistry, 148, 139–148.

    PubMed  CAS  Google Scholar 

  39. Dionne, S., Levy, E., Levesque, D., & Seidman, E. G. (2010). PPARgamma ligand 15-deoxy-delta 12,14-prostaglandin J2 sensitizes human colon carcinoma cells to TWEAK-induced apoptosis. Anticancer Research, 30, 157–166.

    PubMed  CAS  Google Scholar 

  40. Wang, J. J., & Mak, O. T. (2011). Induction of apoptosis by 15d-PGJ2 via ROS formation: an alternative pathway without PPARgamma activation in non-small cell lung carcinoma A549 cells. Prostaglandins & Other Lipid Mediators, 94, 104–111.

    CAS  Google Scholar 

  41. Passeron, T., Valencia, J. C., Namiki, T., Vieira, W. D., Passeron, H., Miyamura, Y., et al. (2009). Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. The Journal of Clinical Investigation, 119, 954–963.

    PubMed  CAS  Google Scholar 

  42. Murata, T., Lin, M. I., Aritake, K., Matsumoto, S., Narumiya, S., Ozaki, H., et al. (2008). Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105, 20009–20014.

    PubMed  CAS  Google Scholar 

  43. Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C., & Lehmann, J. M. (1995). A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell, 83, 813–819.

    PubMed  CAS  Google Scholar 

  44. Pozzi, A., and Capdevila, J.H. (2008). PPARα ligands as antitumorigenic and antiangiogenic agents. PPAR Res 2008, Article ID 906542.

  45. Diers, A. R., Dranka, B. P., Ricart, K. C., Oh, J. Y., Johnson, M. S., Zhou, F., et al. (2010). Modulation of mammary cancer cell migration by 15-deoxy-delta(12,14)-prostaglandin J(2): implications for anti-metastatic therapy. Biochemical Journal, 430, 69–78.

    PubMed  CAS  Google Scholar 

  46. Koyama, M., Izutani, Y., Goda, A. E., Matsui, T. A., Horinaka, M., Tomosugi, M., et al. (2010). Histone deacetylase inhibitors and 15-deoxy-Delta12,14-prostaglandin J2 synergistically induce apoptosis. Clinical Cancer Research, 16, 2320–2332.

    PubMed  CAS  Google Scholar 

  47. Shim, J., Kim, B. H., Kim, Y. I., Kim, K. Y., Hwangbo, Y., Jang, J. Y., et al. (2010). The peroxisome proliferator-activated receptor gamma ligands, pioglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2), have antineoplastic effects against hepatitis B virus-associated hepatocellular carcinoma cells. International Journal of Oncology, 36, 223–231.

    PubMed  CAS  Google Scholar 

  48. Cocca, C., Dorado, J., Calvo, E., Lopez, J. A., Santos, A., & Perez-Castillo, A. (2009). 15-Deoxi-Delta(12,14)-prostaglandin J2 is a tubulin-binding agent that destabilizes microtubules and induces mitotic arrest. Biochemical Pharmacology, 78, 1330–1339.

    PubMed  CAS  Google Scholar 

  49. Coyle, A. T., O'Keeffe, M. B., & Kinsella, B. T. (2005). 15-deoxy Delta12,14-prostaglandin J2 suppresses transcription by promoter 3 of the human thromboxane A2 receptor gene through peroxisome proliferator-activated receptor gamma in human erythroleukemia cells. FEBS Journal, 272, 4754–4773.

    PubMed  CAS  Google Scholar 

  50. Rossi, A., Kapahi, P., Natoli, G., Takahashi, T., Chen, Y., Karin, M., et al. (2000). Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature, 403, 103–108.

    PubMed  CAS  Google Scholar 

  51. Dutta, J., Fan, Y., Gupta, N., Fan, G., & Gelinas, C. (2006). Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene, 25, 6800–6816.

    PubMed  CAS  Google Scholar 

  52. Keightley, M. C., Sales, K. J., & Jabbour, H. N. (2010). PGF2alpha-F-prostanoid receptor signalling via ADAMTS1 modulates epithelial cell invasion and endothelial cell function in endometrial cancer. BMC Cancer, 10, 488.

    PubMed  Google Scholar 

  53. Sales, K. J., List, T., Boddy, S. C., Williams, A. R., Anderson, R. A., Naor, Z., et al. (2005). A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Research, 65, 7707–7716.

    PubMed  CAS  Google Scholar 

  54. Sales, K. J., Boddy, S. C., Williams, A. R., Anderson, R. A., & Jabbour, H. N. (2007). F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells. Endocrinology, 148, 3635–3644.

    PubMed  CAS  Google Scholar 

  55. Jabbour, H. N., Sales, K. J., Boddy, S. C., Anderson, R. A., & Williams, A. R. (2005). A positive feedback loop that regulates cyclooxygenase-2 expression and prostaglandin F2alpha synthesis via the F-series-prostanoid receptor and extracellular signal-regulated kinase 1/2 signaling pathway. Endocrinology, 146, 4657–4664.

    PubMed  CAS  Google Scholar 

  56. Sales, K. J., Boddy, S. C., & Jabbour, H. N. (2008). F-prostanoid receptor alters adhesion, morphology and migration of endometrial adenocarcinoma cells. Oncogene, 27, 2466–2477.

    PubMed  CAS  Google Scholar 

  57. Wallace, A. E., Catalano, R. D., Anderson, R. A., & Jabbour, H. N. (2011). Chemokine (C-C) motif ligand 20 is regulated by PGF(2alpha)-F-prostanoid receptor signalling in endometrial adenocarcinoma and promotes cell proliferation. Molecular and Cellular Endocrinology, 331, 129–135.

    PubMed  CAS  Google Scholar 

  58. Sales, K. J., Maldonado-Perez, D., Grant, V., Catalano, R. D., Wilson, M. R., Brown, P., et al. (2009). Prostaglandin F(2alpha)-F-prostanoid receptor regulates CXCL8 expression in endometrial adenocarcinoma cells via the calcium-calcineurin-NFAT pathway. Biochimica et Biophysica Acta, 1793, 1917–1928.

    PubMed  CAS  Google Scholar 

  59. Wallace, A. E., Sales, K. J., Catalano, R. D., Anderson, R. A., Williams, A. R., Wilson, M. R., et al. (2009). Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma. Cancer Research, 69, 5726–5733.

    PubMed  CAS  Google Scholar 

  60. Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. Journal of Biological Chemistry, 282, 11613–11617.

    PubMed  CAS  Google Scholar 

  61. Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid receptors: subtypes and signaling. Annual Review of Pharmacology and Toxicology, 41, 661–690.

    PubMed  CAS  Google Scholar 

  62. Nakanishi, M., Menoret, A., Tanaka, T., Miyamoto, S., Montrose, D.C., Vella, A., and Rosenberg, D.W. (2011). Selective PGE2 suppression impairs colon carcinogenesis and modifies local mucosal immunity. Cancer Prev Res (Phila), 4(8), 1198–1208.

    Google Scholar 

  63. Hanaka, H., Pawelzik, S. C., Johnsen, J. I., Rakonjac, M., Terawaki, K., Rasmuson, A., et al. (2009). Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 18757–18762.

    PubMed  CAS  Google Scholar 

  64. Regan, J. W. (2003). EP2 and EP4 prostanoid receptor signaling. Life Sciences, 74, 143–153.

    PubMed  CAS  Google Scholar 

  65. Fujino, H., Xu, W., & Regan, J. W. (2003). Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. Journal of Biological Chemistry, 278, 12151–12156.

    PubMed  CAS  Google Scholar 

  66. Pozzi, A., Yan, X., Macias-Perez, I., Wei, S., Hata, A. N., Breyer, R. M., et al. (2004). Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. Journal of Biological Chemistry, 279, 29797–29804.

    PubMed  CAS  Google Scholar 

  67. Macias-Perez, I. M., Zent, R., Carmosino, M., Breyer, M. D., Breyer, R. M., & Pozzi, A. (2008). Mouse EP3 alpha, beta, and gamma receptor variants reduce tumor cell proliferation and tumorigenesis in vivo. Journal of Biological Chemistry, 283, 12538–12545.

    PubMed  CAS  Google Scholar 

  68. Surh, I., Rundhaug, J., Pavone, A., Mikulec, C., Abel, E., & Fischer, S. M. (2011). Upregulation of the EP1 receptor for prostaglandin E(2) promotes skin tumor progression. Molecular Carcinogenesis, 50, 458–468.

    PubMed  CAS  Google Scholar 

  69. Yang, S. F., Chen, M. K., Hsieh, Y. S., Chung, T. T., Hsieh, Y. H., Lin, C. W., et al. (2010). Prostaglandin E2/EP1 signaling pathway enhances intercellular adhesion molecule 1 (ICAM-1) expression and cell motility in oral cancer cells. Journal of Biological Chemistry, 285, 29808–29816.

    PubMed  CAS  Google Scholar 

  70. Liu, J. F., Fong, Y. C., Chang, C. S., Huang, C. Y., Chen, H. T., Yang, W. H., et al. (2010). Cyclooxygenase-2 enhances alpha2beta1 integrin expression and cell migration via EP1 dependent signaling pathway in human chondrosarcoma cells. Molecular Cancer, 9, 43.

    PubMed  Google Scholar 

  71. Ma, X., Kundu, N., Ioffe, O. B., Goloubeva, O., Konger, R., Baquet, C., et al. (2010). Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Molecular Cancer Research, 8, 1310–1318.

    PubMed  CAS  Google Scholar 

  72. Axelsson, H., Lonnroth, C., Wang, W., Svanberg, E., & Lundholm, K. (2005). Cyclooxygenase inhibition in early onset of tumor growth and related angiogenesis evaluated in EP1 and EP3 knockout tumor-bearing mice. Angiogenesis, 8, 339–348.

    PubMed  CAS  Google Scholar 

  73. Sung, Y. M., He, G., & Fischer, S. M. (2005). Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Research, 65, 9304–9311.

    PubMed  CAS  Google Scholar 

  74. Tian, M., & Schiemann, W. P. (2010). PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis. The FASEB Journal, 24, 1105–1116.

    PubMed  CAS  Google Scholar 

  75. Kuo, K. T., Wang, H. W., Chou, T. Y., Hsu, W. H., Hsu, H. S., Lin, C. H., et al. (2009). Prognostic role of PGE2 receptor EP2 in esophageal squamous cell carcinoma. Annals of Surgical Oncology, 16, 352–360.

    PubMed  Google Scholar 

  76. Takahashi, T., Ogawa, H., Izumi, K., & Uehara, H. (2011). The soluble EP2 receptor FuEP2/Ex2 suppresses endometrial cancer cell growth in an orthotopic xenograft model in nude mice. Cancer Letters, 306, 67–75.

    PubMed  CAS  Google Scholar 

  77. Kubo, H., Hosono, K., Suzuki, T., Ogawa, Y., Kato, H., Kamata, H., et al. (2010). Host prostaglandin EP3 receptor signaling relevant to tumor-associated lymphangiogenesis. Biomedicine and Pharmacotherapy, 64, 101–106.

    CAS  Google Scholar 

  78. Amano, H., Ito, Y., Suzuki, T., Kato, S., Matsui, Y., Ogawa, F., et al. (2009). Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix metalloproteinase-9 and vascular endothelial growth factor during enhancement of tumor metastasis. Cancer Science, 100, 2318–2324.

    PubMed  CAS  Google Scholar 

  79. Amano, H., Hayashi, I., Endo, H., Kitasato, H., Yamashina, S., Maruyama, T., et al. (2003). Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. The Journal of Experimental Medicine, 197, 221–232.

    PubMed  CAS  Google Scholar 

  80. Shoji, Y., Takahashi, M., Kitamura, T., Watanabe, K., Kawamori, T., Maruyama, T., et al. (2004). Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut, 53, 1151–1158.

    PubMed  CAS  Google Scholar 

  81. Segi, E., Sugimoto, Y., Yamasaki, A., Aze, Y., Oida, H., Nishimura, T., et al. (1998). Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochemical and Biophysical Research Communications, 246, 7–12.

    PubMed  CAS  Google Scholar 

  82. Cherukuri, D. P., Chen, X. B., Goulet, A. C., Young, R. N., Han, Y., Heimark, R. L., et al. (2007). The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells. Experimental Cell Research, 313, 2969–2979.

    PubMed  CAS  Google Scholar 

  83. Hawcroft, G., Ko, C. W., & Hull, M. A. (2007). Prostaglandin E2-EP4 receptor signalling promotes tumorigenic behaviour of HT-29 human colorectal cancer cells. Oncogene, 26, 3006–3019.

    PubMed  CAS  Google Scholar 

  84. Kim, J. I., Lakshmikanthan, V., Frilot, N., & Daaka, Y. (2010). Prostaglandin E2 promotes lung cancer cell migration via EP4-betaArrestin1-c-Src signalsome. Molecular Cancer Research, 8, 569–577.

    PubMed  CAS  Google Scholar 

  85. Yang, L., Huang, Y., Porta, R., Yanagisawa, K., Gonzalez, A., Segi, E., et al. (2006). Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Research, 66, 9665–9672.

    PubMed  CAS  Google Scholar 

  86. Terada, N., Shimizu, Y., Kamba, T., Inoue, T., Maeno, A., Kobayashi, T., et al. (2010). Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Research, 70, 1606–1615.

    PubMed  CAS  Google Scholar 

  87. Schneider, A., Guan, Y., Zhang, Y., Magnuson, M. A., Pettepher, C., Loftin, C. D., et al. (2004). Generation of a conditional allele of the mouse prostaglandin EP4 receptor. Genesis, 40, 7–14.

    PubMed  CAS  Google Scholar 

  88. Rao, R., Redha, R., Macias-Perez, I., Su, Y., Hao, C., Zent, R., et al. (2007). Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. Journal of Biological Chemistry, 282, 16959–16968.

    PubMed  CAS  Google Scholar 

  89. Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O'Byrne, K., Nie, D., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Reviews, 26, 503–524.

    PubMed  CAS  Google Scholar 

  90. Soberman, R. J., Harper, T. W., Betteridge, D., Lewis, R. A., & Austen, K. F. (1985). Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid omega-6 lipoxygenase (arachidonic acid 15-lipoxygenase) of human polymorphonuclear leukocytes. Journal of Biological Chemistry, 260, 4508–4515.

    PubMed  CAS  Google Scholar 

  91. Bannenberg, G., & Serhan, C. N. (2010). Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochimica et Biophysica Acta, 1801, 1260–1273.

    PubMed  CAS  Google Scholar 

  92. Wasilewicz, M. P., Kolodziej, B., Bojulko, T., Kaczmarczyk, M., Sulzyc-Bielicka, V., Bielicki, D., et al. (2010). Overexpression of 5-lipoxygenase in sporadic colonic adenomas and a possible new aspect of colon carcinogenesis. International Journal of Colorectal Disease, 25, 1079–1085.

    PubMed  Google Scholar 

  93. Melstrom, L. G., Bentrem, D. J., Salabat, M. R., Kennedy, T. J., Ding, X. Z., Strouch, M., et al. (2008). Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clinical Cancer Research, 14, 6525–6530.

    PubMed  CAS  Google Scholar 

  94. Metzger, K., Angres, G., Maier, H., & Lehmann, W. D. (1995). Lipoxygenase products in human saliva: patients with oral cancer compared to controls. Free Radical Biology & Medicine, 18, 185–194.

    CAS  Google Scholar 

  95. Yang, P., Sun, Z., Chan, D., Cartwright, C. A., Vijjeswarapu, M., Ding, J., et al. (2008). Zyflamend reduces LTB4 formation and prevents oral carcinogenesis in a 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced hamster cheek pouch model. Carcinogenesis, 29, 2182–2189.

    PubMed  CAS  Google Scholar 

  96. Chen, Y., Hu, Y., Zhang, H., Peng, C., & Li, S. (2009). Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nature Genetics, 41, 783–792.

    PubMed  CAS  Google Scholar 

  97. Shin, V. Y., Jin, H. C., Ng, E. K., Sung, J. J., Chu, K. M., & Cho, C. H. (2010). Activation of 5-lipoxygenase is required for nicotine mediated epithelial-mesenchymal transition and tumor cell growth. Cancer Letters, 292, 237–245.

    PubMed  CAS  Google Scholar 

  98. Schroeder, C. P., Yang, P., Newman, R. A., & Lotan, R. (2007). Simultaneous inhibition of COX-2 and 5-LOX activities augments growth arrest and death of premalignant and malignant human lung cell lines. Journal of Experimental Therapeutics and Oncology, 6, 183–192.

    PubMed  CAS  Google Scholar 

  99. Hayashi, T., Nishiyama, K., & Shirahama, T. (2006). Inhibition of 5-lipoxygenase pathway suppresses the growth of bladder cancer cells. International Journal of Urology, 13, 1086–1091.

    PubMed  CAS  Google Scholar 

  100. Chen, X., Wang, S., Wu, N., & Yang, C. S. (2004). Leukotriene A4 hydrolase as a target for cancer prevention and therapy. Current Cancer Drug Targets, 4, 267–283.

    PubMed  CAS  Google Scholar 

  101. Peters-Golden, M., & Brock, T. G. (2003). 5-Lipoxygenase and FLAP. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 69, 99–109.

    PubMed  CAS  Google Scholar 

  102. Schweiger, D., Furstenberger, G., & Krieg, P. (2007). Inducible expression of 15-lipoxygenase-2 and 8-lipoxygenase inhibits cell growth via common signaling pathways. Journal of Lipid Research, 48, 553–564.

    PubMed  CAS  Google Scholar 

  103. Muga, S. J., Thuillier, P., Pavone, A., Rundhaug, J. E., Boeglin, W. E., Jisaka, M., et al. (2000). 8S-Lipoxygenase products activate peroxisome proliferator-activated receptor alpha and induce differentiation in murine keratinocytes. Cell Growth & Differentiation, 11, 447–454.

    CAS  Google Scholar 

  104. Burger, F., Krieg, P., Kinzig, A., Schurich, B., Marks, F., & Furstenberger, G. (1999). Constitutive expression of 8-lipoxygenase in papillomas and clastogenic effects of lipoxygenase-derived arachidonic acid metabolites in keratinocytes. Molecular Carcinogenesis, 24, 108–117.

    PubMed  CAS  Google Scholar 

  105. Hagmann, W., Gao, X., Zacharek, A., Wojciechowski, L. A., & Honn, K. V. (1995). 12-Lipoxygenase in Lewis lung carcinoma cells: molecular identity, intracellular distribution of activity and protein, and Ca(2+)-dependent translocation from cytosol to membranes. Prostaglandins, 49, 49–62.

    PubMed  CAS  Google Scholar 

  106. Gao, X., Grignon, D. J., Chbihi, T., Zacharek, A., Chen, Y. Q., Sakr, W., et al. (1995). Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology, 46, 227–237.

    PubMed  CAS  Google Scholar 

  107. Nithipatikom, K., Isbell, M. A., See, W. A., & Campbell, W. B. (2006). Elevated 12- and 20-hydroxyeicosatetraenoic acid in urine of patients with prostatic diseases. Cancer Letters, 233, 219–225.

    PubMed  CAS  Google Scholar 

  108. Tang, D. G., Chen, Y. Q., & Honn, K. V. (1996). Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 93, 5241–5246.

    PubMed  CAS  Google Scholar 

  109. Wong, B. C., Wang, W. P., Cho, C. H., Fan, X. M., Lin, M. C., Kung, H. F., et al. (2001). 12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells. Carcinogenesis, 22, 1349–1354.

    PubMed  CAS  Google Scholar 

  110. Pidgeon, G. P., Kandouz, M., Meram, A., & Honn, K. V. (2002). Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Research, 62, 2721–2727.

    PubMed  CAS  Google Scholar 

  111. Nie, D., Hillman, G. G., Geddes, T., Tang, K., Pierson, C., Grignon, D. J., et al. (1998). Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth. Cancer Research, 58, 4047–4051.

    PubMed  CAS  Google Scholar 

  112. Tang, D. G., Renaud, C., Stojakovic, S., Diglio, C. A., Porter, A., & Honn, K. V. (1995). 12(S)-HETE is a mitogenic factor for microvascular endothelial cells: its potential role in angiogenesis. Biochemical and Biophysical Research Communications, 211, 462–468.

    PubMed  CAS  Google Scholar 

  113. Nie, D., Tang, K., Diglio, C., & Honn, K. V. (2000). Eicosanoid regulation of angiogenesis: role of endothelial arachidonate 12-lipoxygenase. Blood, 95, 2304–2311.

    PubMed  CAS  Google Scholar 

  114. Nie, D., Krishnamoorthy, S., Jin, R., Tang, K., Chen, Y., Qiao, Y., et al. (2006). Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. Journal of Biological Chemistry, 281, 18601–18609.

    PubMed  CAS  Google Scholar 

  115. Tang, D. G., Timar, J., Grossi, I. M., Renaud, C., Kimler, V. A., Diglio, C. A., et al. (1993). The lipoxygenase metabolite, 12(S)-HETE, induces a protein kinase C-dependent cytoskeletal rearrangement and retraction of microvascular endothelial cells. Experimental Cell Research, 207, 361–375.

    PubMed  CAS  Google Scholar 

  116. Tang, D. G., Chen, Y. Q., Diglio, C. A., & Honn, K. V. (1993). Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor. The Journal of Cell Biology, 121, 689–704.

    PubMed  CAS  Google Scholar 

  117. Brooks, P. C., Clark, R. A., & Cheresh, D. A. (1994). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 264, 569–571.

    PubMed  CAS  Google Scholar 

  118. Kurahashi, Y., Herbertsson, H., Soderstrom, M., Rosenfeld, M. G., & Hammarstrom, S. (2000). A 12(S)-hydroxyeicosatetraenoic acid receptor interacts with steroid receptor coactivator-1. Proceedings of the National Academy of Sciences of the United States of America, 97, 5779–5783.

    PubMed  CAS  Google Scholar 

  119. Herbertsson, H., & Hammarstrom, S. (1997). Cytosolic 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid binding sites in carcinoma cells. Advances in Experimental Medicine and Biology, 400A, 287–293.

    PubMed  CAS  Google Scholar 

  120. Herbertsson, H., Kuhme, T., Evertsson, U., Wigren, J., & Hammarstrom, S. (1998). Identification of subunits of the 650 kDa 12(S)-HETE binding complex in carcinoma cells. Journal of Lipid Research, 39, 237–244.

    PubMed  CAS  Google Scholar 

  121. Herbertsson, H., Kuhme, T., & Hammarstrom, S. (1999). Subunits and cellular occurrence of the 12(S)-HETE binding complex. Advances in Experimental Medicine and Biology, 469, 253–258.

    PubMed  CAS  Google Scholar 

  122. Herbertsson, H., Kuhme, T., & Hammarstrom, S. (1999). The 650-kDa 12(S)-hydroxyeicosatetraenoic acid binding complex: occurrence in human platelets, identification of hsp90 as a constituent, and binding properties of its 50-kDa subunit. Archives of Biochemistry and Biophysics, 367, 33–38.

    PubMed  CAS  Google Scholar 

  123. Moreno, J. J. (2009). New aspects of the role of hydroxyeicosatetraenoic acids in cell growth and cancer development. Biochemical Pharmacology, 77, 1–10.

    PubMed  CAS  Google Scholar 

  124. Jiang, W. G., Watkins, G., Douglas-Jones, A., & Mansel, R. E. (2006). Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 235–245.

    PubMed  CAS  Google Scholar 

  125. Shureiqi, I., Wu, Y., Chen, D., Yang, X. L., Guan, B., Morris, J. S., et al. (2005). The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Research, 65, 11486–11492.

    PubMed  CAS  Google Scholar 

  126. Freedman, R. S., Wang, E., Voiculescu, S., Patenia, R., Bassett, R. L., Jr., Deavers, M., et al. (2007). Comparative analysis of peritoneum and tumor eicosanoids and pathways in advanced ovarian cancer. Clinical Cancer Research, 13, 5736–5744.

    PubMed  CAS  Google Scholar 

  127. Tang, D. G., Bhatia, B., Tang, S., & Schneider-Broussard, R. (2007). 15-Lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins & Other Lipid Mediators, 82, 135–146.

    CAS  Google Scholar 

  128. Tang, S., Bhatia, B., Maldonado, C. J., Yang, P., Newman, R. A., Liu, J., et al. (2002). Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. Journal of Biological Chemistry, 277, 16189–16201.

    PubMed  CAS  Google Scholar 

  129. Bhatia, B., Tang, S., Yang, P., Doll, A., Aumueller, G., Newman, R. A., et al. (2005). Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene, 24, 3583–3595.

    PubMed  CAS  Google Scholar 

  130. Shappell, S. B., Boeglin, W. E., Olson, S. J., Kasper, S., & Brash, A. R. (1999). 15-Lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. American Journal of Pathology, 155, 235–245.

    PubMed  CAS  Google Scholar 

  131. Suraneni, M. V., Schneider-Broussard, R., Moore, J. R., Davis, T. C., Maldonado, C. J., Li, H., et al. (2010). Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence. Oncogene, 29, 4261–4275.

    PubMed  CAS  Google Scholar 

  132. Zuo, X., Wu, Y., Morris, J. S., Stimmel, J. B., Leesnitzer, L. M., Fischer, S. M., et al. (2006). Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene, 25, 1225–1241.

    PubMed  CAS  Google Scholar 

  133. Shureiqi, I., Jiang, W., Zuo, X., Wu, Y., Stimmel, J. B., Leesnitzer, L. M., et al. (2003). The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9968–9973.

    PubMed  CAS  Google Scholar 

  134. Keshamouni, V. G., Reddy, R. C., Arenberg, D. A., Joel, B., Thannickal, V. J., Kalemkerian, G. P., et al. (2004). Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer. Oncogene, 23, 100–108.

    PubMed  CAS  Google Scholar 

  135. Yuan, H., Li, M. Y., Ma, L. T., Hsin, M. K., Mok, T. S., Underwood, M. J., et al. (2010). 15-Lipoxygenases and its metabolites 15(S)-HETE and 13(S)-HODE in the development of non-small cell lung cancer. Thorax, 65, 321–326.

    PubMed  Google Scholar 

  136. Nixon, J. B., Kim, K. S., Lamb, P. W., Bottone, F. G., & Eling, T. E. (2004). 15-Lipoxygenase-1 has anti-tumorigenic effects in colorectal cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 7–15.

    PubMed  CAS  Google Scholar 

  137. Mao, J. T., Nie, W. X., Tsu, I. H., Jin, Y. S., Rao, J. Y., Lu, Q. Y., et al. (2010). White tea extract induces apoptosis in non-small cell lung cancer cells: the role of peroxisome proliferator-activated receptor-γ and 15-lipoxygenases. Cancer Prevention Research (Philadelphia, Pa.), 3, 1132–1140.

    CAS  Google Scholar 

  138. Harats, D., Ben-Shushan, D., Cohen, H., Gonen, A., Barshack, I., Goldberg, I., et al. (2005). Inhibition of carcinogenesis in transgenic mouse models over-expressing 15-lipoxygenase in the vascular wall under the control of murine preproendothelin-1 promoter. Cancer Letters, 229, 127–134.

    PubMed  CAS  Google Scholar 

  139. Viita, H., Markkanen, J., Eriksson, E., Nurminen, M., Kinnunen, K., Babu, M., et al. (2008). 15-Lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circulation Research, 102, 177–184.

    PubMed  CAS  Google Scholar 

  140. Sauer, L. A., Dauchy, R. T., Blask, D. E., Armstrong, B. J., & Scalici, S. (1999). 13-Hydroxyoctadecadienoic acid is the mitogenic signal for linoleic acid-dependent growth in rat hepatoma 7288CTC in vivo. Cancer Research, 59, 4688–4692.

    PubMed  CAS  Google Scholar 

  141. Kelavkar, U. P., Cohen, C., Kamitani, H., Eling, T. E., & Badr, K. F. (2000). Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis, 21, 1777–1787.

    PubMed  CAS  Google Scholar 

  142. Kelavkar, U. P., Glasgow, W., Olson, S. J., Foster, B. A., & Shappell, S. B. (2004). Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia, 6, 821–830.

    PubMed  CAS  Google Scholar 

  143. Planaguma, A., Kazani, S., Marigowda, G., Haworth, O., Mariani, T. J., Israel, E., et al. (2008). Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. American Journal of Respiratory and Critical Care Medicine, 178, 574–582.

    PubMed  CAS  Google Scholar 

  144. Kieran, N. E., Maderna, P., & Godson, C. (2004). Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney International, 65, 1145–1154.

    PubMed  CAS  Google Scholar 

  145. Chen, Y., Hao, H., He, S., Cai, L., Li, Y., Hu, S., et al. (2010). Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Molecular Cancer Therapeutics, 9, 2164–2174.

    PubMed  CAS  Google Scholar 

  146. Liu, S., Wu, P., Ye, D., Huang, Y., Zhou, X., Li, Y., et al. (2009). Effects of lipoxin A(4) on CoCl(2)-induced angiogenesis and its possible mechanisms in human umbilical vein endothelial cells. Pharmacology, 84, 17–23.

    PubMed  CAS  Google Scholar 

  147. Cezar-de-Mello, P. F., Nascimento-Silva, V., Villela, C. G., & Fierro, I. M. (2006). Aspirin-triggered Lipoxin A4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene, 25, 122–129.

    PubMed  CAS  Google Scholar 

  148. Cezar-de-Mello, P. F., Vieira, A. M., Nascimento-Silva, V., Villela, C. G., Barja-Fidalgo, C., & Fierro, I. M. (2008). ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. British Journal of Pharmacology, 153, 956–965.

    PubMed  CAS  Google Scholar 

  149. Schneider, C., Boeglin, W. E., Yin, H., Stec, D. F., & Voehler, M. (2006). Convergent oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2. Journal of the American Chemical Society, 128, 720–721.

    PubMed  CAS  Google Scholar 

  150. Griesser, M., Suzuki, T., Tejera, N., Mont, S., Boeglin, W. E., Pozzi, A., et al. (2011). Biosynthesis of hemiketal eicosanoids by cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways. Proceedings of the National Academy of Sciences of the United States of America, 108, 6945–6950.

    PubMed  CAS  Google Scholar 

  151. Nie, D., & Honn, K. V. (2002). Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cellular and Molecular Life Sciences, 59, 799–807.

    PubMed  CAS  Google Scholar 

  152. Tong, W. G., Ding, X. Z., Witt, R. C., & Adrian, T. E. (2002). Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Molecular Cancer Therapeutics, 1, 929–935.

    PubMed  CAS  Google Scholar 

  153. Agarwal, S., Achari, C., Praveen, D., Roy, K. R., Reddy, G. V., & Reddanna, P. (2009). Inhibition of 12-LOX and COX-2 reduces the proliferation of human epidermoid carcinoma cells (A431) by modulating the ERK and PI3K-Akt signalling pathways. Experimental Dermatology, 18, 939–946.

    PubMed  CAS  Google Scholar 

  154. Pergola, C., & Werz, O. (2010). 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opinion on Therapeutic Patents, 20, 355–375.

    PubMed  CAS  Google Scholar 

  155. Bolger, J. K., Tian, W., Wolter, W. R., Cho, W., Suckow, M. A., & Miller, M. J. (2011). Synthesis and evaluation of 5-lipoxygenase translocation inhibitors from acylnitroso hetero-Diels-Alder cycloadducts. Organic and Biomolecular Chemistry, 9, 2999–3010.

    PubMed  CAS  Google Scholar 

  156. Reddy, N. P., Aparoy, P., Reddy, T. C., Achari, C., Sridhar, P. R., & Reddanna, P. (2010). Design, synthesis, and biological evaluation of prenylated chalcones as 5-LOX inhibitors. Bioorganic & Medicinal Chemistry, 18, 5807–5815.

    CAS  Google Scholar 

  157. Sarveswaran, S., Myers, C. E., & Ghosh, J. (2010). MK591, a leukotriene biosynthesis inhibitor, induces apoptosis in prostate cancer cells: synergistic action with LY294002, an inhibitor of phosphatidylinositol 3'-kinase. Cancer Letters, 291, 167–176.

    PubMed  CAS  Google Scholar 

  158. Fischer, A. S., Metzner, J., Steinbrink, S. D., Ulrich, S., Angioni, C., Geisslinger, G., et al. (2010). 5-Lipoxygenase inhibitors induce potent anti-proliferative and cytotoxic effects in human tumour cells independently of suppression of 5-lipoxygenase activity. British Journal of Pharmacology, 161, 936–949.

    PubMed  CAS  Google Scholar 

  159. Thun, M. J., Namboodiri, M. M., & Heath, C. W., Jr. (1991). Aspirin use and reduced risk of fatal colon cancer. The New England Journal of Medicine, 325, 1593–1596.

    PubMed  CAS  Google Scholar 

  160. Gupta, R. A., & Dubois, R. N. (2001). Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Reviews. Cancer, 1, 11–21.

    PubMed  CAS  Google Scholar 

  161. Cha, Y. I., & DuBois, R. N. (2007). NSAIDs and cancer prevention: targets downstream of COX-2. Annual Review of Medicine, 58, 239–252.

    PubMed  CAS  Google Scholar 

  162. Witton, C. J., Hawe, S. J., Cooke, T. G., & Bartlett, J. M. (2004). Cyclooxygenase 2 (COX2) expression is associated with poor outcome in ER-negative, but not ER-positive, breast cancer. Histopathology, 45, 47–54.

    PubMed  CAS  Google Scholar 

  163. (2005). FDA warning on NSAID use. FDA Consum 39:5.

  164. Mukherjee, D. (2008). Nonsteroidal anti-inflammatory drugs and the heart: what is the danger? Congestive Heart Failure, 14, 75–82.

    PubMed  CAS  Google Scholar 

  165. Grosser, T., Fries, S., & FitzGerald, G. A. (2006). Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. The Journal of Clinical Investigation, 116, 4–15.

    PubMed  CAS  Google Scholar 

  166. Zhang, M. Z., Xu, J., Yao, B., Yin, H., Cai, Q., Shrubsole, M. J., et al. (2009). Inhibition of 11beta-hydroxysteroid dehydrogenase type II selectively blocks the tumor COX-2 pathway and suppresses colon carcinogenesis in mice and humans. The Journal of Clinical Investigation, 119, 876–885.

    PubMed  CAS  Google Scholar 

  167. Cerella, C., Sobolewski, C., Dicato, M., & Diederich, M. (2010). Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochemical Pharmacology, 80, 1801–1815.

    PubMed  CAS  Google Scholar 

  168. Jang, M., & Pezzuto, J. M. (1999). Cancer chemopreventive activity of resveratrol. Drugs Under Experimental and Clinical Research, 25, 65–77.

    PubMed  CAS  Google Scholar 

  169. Subbaramaiah, K., Chung, W. J., Michaluart, P., Telang, N., Tanabe, T., Inoue, H., et al. (1998). Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. Journal of Biological Chemistry, 273, 21875–21882.

    PubMed  CAS  Google Scholar 

  170. Kundu, J. K., Na, H. K., Chun, K. S., Kim, Y. K., Lee, S. J., Lee, S. S., et al. (2003). Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. Journal of Nutrition, 133, 3805S–3810S.

    PubMed  CAS  Google Scholar 

  171. Woo, E. R., Pokharel, Y. R., Yang, J. W., Lee, S. Y., & Kang, K. W. (2006). Inhibition of nuclear factor-kappaB activation by 2',8''-biapigenin. Biological and Pharmaceutical Bulletin, 29, 976–980.

    PubMed  CAS  Google Scholar 

  172. Corona, G., Deiana, M., Incani, A., Vauzour, D., Dessi, M. A., & Spencer, J. P. (2007). Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochemical and Biophysical Research Communications, 362, 606–611.

    PubMed  CAS  Google Scholar 

  173. Barry, M., Cahill, R. A., Roche-Nagle, G., Neilan, T. G., Treumann, A., Harmey, J. H., et al. (2009). Neoplasms escape selective COX-2 inhibition in an animal model of breast cancer. Irish Journal of Medical Science, 178, 201–208.

    PubMed  CAS  Google Scholar 

  174. Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26, 827–834.

    PubMed  CAS  Google Scholar 

  175. Laufer, S. A., Augustin, J., Dannhardt, G., & Kiefer, W. (1994). (6,7-Diaryldihydropyrrolizin-5-yl)acetic acids, a novel class of potent dual inhibitors of both cyclooxygenase and 5-lipoxygenase. Journal of Medicinal Chemistry, 37, 1894–1897.

    PubMed  CAS  Google Scholar 

  176. Fiorucci, S., Meli, R., Bucci, M., & Cirino, G. (2001). Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochemical Pharmacology, 62, 1433–1438.

    PubMed  CAS  Google Scholar 

  177. Rao, P. N., Chen, Q. H., & Knaus, E. E. (2006). Synthesis and structure-activity relationship studies of 1,3-diarylprop-2-yn-1-ones: dual inhibitors of cyclooxygenases and lipoxygenases. Journal of Medicinal Chemistry, 49, 1668–1683.

    PubMed  CAS  Google Scholar 

  178. Rao, P., & Knaus, E. E. (2008). Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. Journal of Pharmacy and Pharmaceutical Sciences, 11, 81s–110s.

    PubMed  Google Scholar 

  179. Rao, C. V. (2007). Regulation of COX and LOX by curcumin. Advances in Experimental Medicine and Biology, 595, 213–226.

    PubMed  Google Scholar 

  180. Zhang, F., Altorki, N. K., Mestre, J. R., Subbaramaiah, K., & Dannenberg, A. J. (1999). Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis, 20, 445–451.

    PubMed  CAS  Google Scholar 

  181. Huang, M. T., Lysz, T., Ferraro, T., Abidi, T. F., Laskin, J. D., & Conney, A. H. (1991). Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Research, 51, 813–819.

    PubMed  CAS  Google Scholar 

  182. Griesser, M., Pistis, V., Suzuki, T., Tejera, N., Pratt, D. A., & Schneider, C. (2011). Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. Journal of Biological Chemistry, 286, 1114–1124.

    PubMed  CAS  Google Scholar 

  183. Ohashi, Y., Tsuchiya, Y., Koizumi, K., Sakurai, H., & Saiki, I. (2003). Prevention of intrahepatic metastasis by curcumin in an orthotopic implantation model. Oncology, 65, 250–258.

    PubMed  Google Scholar 

  184. Bengmark, S., Mesa, M. D., & Gil, A. (2009). Plant-derived health: the effects of turmeric and curcuminoids. Nutrición Hospitalaria, 24, 273–281.

    PubMed  CAS  Google Scholar 

  185. Zhang, B., Wang, C. L., Zhao, W. H., Lv, M., Wang, C. Y., Zhong, W. X., et al. (2008). Effect of 5-LOX/COX-2 common inhibitor DHDMBF30 on pancreatic cancer cell Capan2. World Journal of Gastroenterology, 14, 2494–2500.

    PubMed  CAS  Google Scholar 

  186. Bridoux, A., Millet, R., Pommery, J., Pommery, N., & Henichart, J. P. (2010). Synthesis and biological activity of N-aroyl-tetrahydro-gamma-carbolines. Bioorganic & Medicinal Chemistry, 18, 3910–3924.

    CAS  Google Scholar 

  187. Pontiki, E., Hadjipavlou-Litina, D., Litinas, K., Nicolotti, O., & Carotti, A. (2011). Design, synthesis and pharmacobiological evaluation of novel acrylic acid derivatives acting as lipoxygenase and cyclooxygenase-1 inhibitors with antioxidant and anti-inflammatory activities. European Journal of Medicinal Chemistry, 46, 191–200.

    PubMed  CAS  Google Scholar 

  188. Tauler, J., & Mulshine, J. L. (2008). Combination therapy of PPARgamma ligands and inhibitors of arachidonic acid in lung cancer. PPAR Research, 2008, 750238.

    PubMed  Google Scholar 

  189. Hanif, R., Pittas, A., Feng, Y., Koutsos, M. I., Qiao, L., Staiano-Coico, L., et al. (1996). Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochemical Pharmacology, 52, 237–245.

    PubMed  CAS  Google Scholar 

  190. Piazza, G. A., Alberts, D. S., Hixson, L. J., Paranka, N. S., Li, H., Finn, T., et al. (1997). Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Research, 57, 2909–2915.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were in part supported by a Merit Review from the Department of Veterans Affairs (AP) and the NIH grants 2P01DK065123 (AP); 2PO1DK38226 (AP); the O’Brien P30DK79341-01 (AP); and GM076592 (CS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambra Pozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, C., Pozzi, A. Cyclooxygenases and lipoxygenases in cancer. Cancer Metastasis Rev 30, 277–294 (2011). https://doi.org/10.1007/s10555-011-9310-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9310-3

Keywords

Navigation