Skip to main content

Advertisement

Log in

Urothelial cancer stem cells and epithelial plasticity: current concepts and therapeutic implications in bladder cancer

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Urothelial carcinoma is a highly heterogeneous disease that develops along two distinct biological tracks as evident by candidate gene analysis and genome-wide screening and therefore, offers different challenges for clinical management. Tumors representing the truly distinct molecular entities express molecular markers characteristic of a developmental process and a major mechanism of cancer metastasis, known as epithelial-to-mesenchymal transition (EMT). Recently identified subset of cells known as urothelial cancer stem cells (UroCSCs) in urothelial cell carcinoma (UCC) have self-renewal properties, ability to generate cellular tumor heterogeneity via differentiation and are ultimately responsible for tumor growth and viability. In this review paper, PubMed and Google Scholar electronic databases were searched for original research papers and review articles to extract relevant information on the molecular mechanisms delineating the relationship between EMT and cancer stemness and their clinical implications for different subsets of urothelial cell carcinomas. Experimental and clinical studies over the past few years in bladder cancer cell lines and tumor tissues of different cancer subtypes provide evidences and new insights for mechanistic complexity for induction of EMT, tumorigenicity, and cancer stemness in malignant transformation of urothelial cell carcinomas. Differentiation and elimination therapies targeting EMT-cancer stemness pathway have been proposed as cynosure in the molecular biology of urothelial cell carcinomas and could prove to be clinically beneficial in an ability to reverse the EMT phenotype of tumor cells, suppress the properties of UroCSCs, inhibit bladder cancer progression and tumor relapse, and provide rationale in the treatment and clinical management of urothelial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van der Horst, G., Bos, L., & van der Pluijm, G. (2012). Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma. Molecular Cancer Research, 10(8), 995–1009.

    Article  PubMed  Google Scholar 

  2. Castillo-Martin, M., Domingo-Domenech, J., Karni-Schmidt, O., Matos, T., & Cordon-Cardo, C. (2010). Molecular pathways of urothelial development and bladder tumorigenesis. Urologic Oncology, 28(4), 401–408.

    Article  CAS  PubMed  Google Scholar 

  3. Brandt, W. D., Matsui, W., Rosenberg, J. E., He, X., Ling, S., Schaeffer, E. M., & Berman, D. M. (2009). Urothelial carcinoma: stem cells on the edge. Cancer and Metastasis Reviews, 28(3–4), 291–304.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kurzrock, E. A., Lieu, D. K., Degraffenried, L. A., Chan, C. W., & Isseroff, R. R. (2008). Label-retaining cells of the bladder: candidate urothelial stem cells. American Journal of Physiology. Renal Physiology, 294(6), F1415-21.

    Article  PubMed  Google Scholar 

  5. Hatina, J., & Schulz, W. A. (2012). Stem cells in the biology of normal urothelium and urothelial carcinoma. Neoplasma, 59(6), 728–736.

    Article  CAS  PubMed  Google Scholar 

  6. Ho, P. L., Kurtova, A., & Chan, K. S. (2012). Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nature Reviews. Urology, 9(10), 583–594.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Thangappan, R., & Kurzrock, E. A. (2009). Three clonal types of urothelium with different capacities for replication. Cell Proliferation, 42(6), 770–779.

    Article  CAS  PubMed  Google Scholar 

  8. Ning, Z. F., Huang, Y. J., Lin, T. X., Zhou, Y. X., Jiang, C., Xu, K. W., Huang, H., Yin, X. B., & Huang, J. (2009). Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24. The Journal of International Medical Research, 37(3), 621–630.

    Article  CAS  PubMed  Google Scholar 

  9. She, J. J., Zhang, P. G., Wang, Z. M., Gan, W. M., & Che, X. M. (2008). Identification of side population cells from bladder cancer cells by DyeCycle Violet staining. Cancer Biology & Therapy, 7(10), 1663–1668.

    Article  CAS  Google Scholar 

  10. Chan, K. S., Espinosa, I., Chao, M., Wong, D., Ailles, L., Diehn, M., Gill, H., Presti, J., Jr., Chang, H. Y., van de Rijn, M., Shortliffe, L., & Weissman, I. L. (2009). Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14016–14021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yang, Y. M., & Chang, J. W. (2008). Bladdercancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Investigation, 26(7), 725–733.

    Article  CAS  PubMed  Google Scholar 

  12. He, X., Marchionni, L., Hansel, D. E., Yu, W., Sood, A., Yang, J., Parmigiani, G., Matsui, W., & Berman, D. M. (2009). Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells, 27(7), 1487–1495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Su, Y., Qiu, Q., Zhang, X., Jiang, Z., Leng, Q., Liu, Z., Stass, S. A., & Jiang, F. (2010). Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiology, Biomarkers & Prevention, 19(2), 327–337.

    Article  CAS  Google Scholar 

  14. Bentivegna, A., Conconi, D., Panzeri, E., Sala, E., Bovo, G., Viganò, P., Brunelli, S., Bossi, M., Tredici, G., Strada, G., & Dalprà, L. (2009). Biological heterogeneity of putative bladder cancer stem-like cell populations from human bladder transitional cell carcinoma samples. Cancer Science, 101(2), 416–424.

    Article  PubMed  Google Scholar 

  15. Oates, J. E., Grey, B. R., Addla, S. K., Samuel, J. D., Hart, C. A., Ramani, V. A., Brown, M. D., & Clarke, N. W. (2009). Hoechst 33342 side population identification is a conserved and unified mechanism in urological cancers. Stem Cells and Development, 18(10), 1515–1522.

    Article  CAS  PubMed  Google Scholar 

  16. Massard, C., Deutsch, E., & Soria, J. C. (2006). Tumor stem cell-targeted treatment: elimination or differentiation. Annals of Oncology, 17(11), 1620–1624.

    Article  CAS  PubMed  Google Scholar 

  17. Shin, K., Lee, J., Guo, N., Kim, J., Lim, A., Qu, L., Mysorekar, I. U., & Beachy, P. A. (2011). Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature, 472(7341), 110–114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Herzig, M., Savarese, F., Novatchkova, M., Semb, H., & Christofori, G. (2007). Tumor progression induced by the loss of E-cadherin independent of beta catenin/Tcf-mediated Wnt signaling. Oncogene, 26, 2290–2298.

    Article  CAS  PubMed  Google Scholar 

  19. Suyama, K., Shapiro, I., Guttman, M., & Hazan, R. B. (2002). A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell, 2, 301–314.

    Article  CAS  PubMed  Google Scholar 

  20. Mandeville, J. A., Silva, N. B., Vanni, A. J., Smith, G. L., Rieger-Christ, K. M., Zeheb, R., Loda, M., Libertino, J. A., & Summerhayes, I. C. (2008). P-cadherin as a prognostic indicator and a modulator of migratory behavior in bladder carcinoma cells. BJU International, 102, 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  21. Islam, S. S., Mokhtari, R. B., Noman, A. S., Uddin, M., Rahman, M. Z., Azadi, M. A., Zlotta, A., van der Kwast, T., Yeger, H., & Farhat, W. A. (2015). Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Molecular Carcinogenesis. doi:10.1002/mc.22300.

    PubMed  Google Scholar 

  22. Fondrevelle, M. E., Kantelip, B., Reiter, R. E., Chopin, D. K., Thiery, J. P., Monnien, F., Bittard, H., & Wallerand, H. (2009). The expression of Twist has an impact on survival in human bladder cancer and is influenced by the smoking status. Urologic Oncology, 27, 268–276.

    Article  CAS  PubMed  Google Scholar 

  23. Garg, M. (2013). Epithelial-mesenchymal transition—activating transcription factors—multifunctional regulators in cancer. World Journal of Stem Cells, 5(4), 188–195.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Yu, Q., Zhang, K., Wang, X., Liu, X., & Zhang, Z. (2010). Expression of transcription factors snail, slug, and twist in human bladder carcinoma. Journal of Experimental & Clinical Cancer Research, 29, 119.

    Article  CAS  Google Scholar 

  25. Bruyere, F., Namdarian, B., Corcoran, N. M., Pedersen, J., Ockrim, J., Voelzke, B. B., Mete, U., Costello, A. J., & Hovens, C. M. (2010). Snail expression is an independent predictor of tumor recurrence in superficial bladder cancers. Urologic Oncology, 28, 591–596.

    Article  PubMed  Google Scholar 

  26. Zhao, D., Besser, A. H., Wander, S. A., Sun, J., Zhou, W., Wang, B., Ince, T., Durante, M. A., Guo, W., Mills, G., Theodorescu, D., & Slingerland, J. (2015). Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene. doi:10.1038/onc.2014.473.

    Google Scholar 

  27. Garg, M. (2015). Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opinion on Therapeutic Targets, 19(2), 285–297.

    Article  CAS  PubMed  Google Scholar 

  28. Majid, S., Dar, A. A., Saini, S., Deng, G., Chang, I., Greene, K., Tanaka, Y., Dahiya, R., & Yamamura, S. (2013). MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PloS One, 8(7), e67686.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wiklund, E. D., Bramsen, J. B., Hulf, T., Dyrskjøt, L., Ramanathan, R., Hansen, T. B., Villadsen, S. B., Gao, S., Ostenfeld, M. S., Borre, M., Peter, M. E., Ørntoft, T. F., Kjems, J., & Clark, S. J. (2011). Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. International Journal of Cancer, 128(6), 1327–1334.

    Article  CAS  Google Scholar 

  30. Garg, M. (2014). Prognostic and therapeutic applications of the molecular events in clinical management of urothelial carcinoma of bladder. Journal of Experimental and Therapeutic Oncology, 10(4), 301–316.

    CAS  Google Scholar 

  31. Zhang, Y., Wang, Z., Yu, J., Jz, S., Wang, C., Wh, F., Zw, C., & Yang, J. (2012). Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer. Cancer Letters, 322(1), 70–77.

    Article  CAS  PubMed  Google Scholar 

  32. Massari F, Ciccarese C, Santoni M, Brunelli M, Conti A, Modena A, Montironi R, Santini D, Cheng L, Martignoni G, Cascinu S, Tortora G (2015). The route to personalized medicine in bladder cancer: where do we stand? Target Oncology

  33. Adam, L., Zhong, M., Choi, W., Qi, W., Nicoloso, M., Arora, A., Calin, G., Wang, H., Siefker-Radtke, A., McConkey, D., Bar-Eli, M., & Dinney, C. (2009). miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clinical Cancer Research, 15(16), 5060–5072.

    Article  CAS  PubMed  Google Scholar 

  34. Singh, S. V., & Singh, K. (2012). Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis, 33(10), 1833–1842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wu, K., Ning, Z., Zeng, J., Fan, J., Zhou, J., Zhang, T., Zhang, L., Chen, Y., Gao, Y., Wang, B., Guo, P., Li, L., Wang, X., & He, D. (2013). Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cellular Signalling, 25(12), 2625–2633.

    Article  CAS  PubMed  Google Scholar 

  36. Katoh, M., & Nakagama, H. (2014). FGF receptors: cancer biology and therapeutics.Med. Research Reviews, 34(2), 280–300.

    Article  CAS  Google Scholar 

  37. Chan, E., Patel, A., Heston, W., & Larchian, W. (2009). Mouse orthotopic models for bladder cancer research. BJU International, 104(9), 1286–1291.

    Article  PubMed  Google Scholar 

  38. Zhang, Z. T., Pak, J., Shapiro, E., Sun, T. T., & Wu, X. R. (1999). Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Research, 59(14), 3512–3517.

    CAS  PubMed  Google Scholar 

  39. Kenny, P. A., Lee, G. Y., & Bissell, M. J. (2007). Targeting the tumor microenvironment. Frontiers in Bioscience, 12, 3468–3474.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sincere thanks goes to the Department of Science and Technology, Govt. of India for providing research grant (grant no. SR/SO/HS-0113/2010).

Conflict of interest

Author declares no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minal Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, M. Urothelial cancer stem cells and epithelial plasticity: current concepts and therapeutic implications in bladder cancer. Cancer Metastasis Rev 34, 691–701 (2015). https://doi.org/10.1007/s10555-015-9589-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9589-6

Keywords

Navigation