Skip to main content
Log in

Methods for Calculating Coronary Perfusion Pressure During CPR

  • Original Paper
  • Published:
Cardiovascular Engineering

Abstract

Coronary perfusion pressure (CPP) is a major indicator of the effectiveness of cardiopulmonary resuscitation in human and animal research studies, however, methods for calculating CPP differ among research groups. Here we compare the 6 published methods for calculating CPP using the same data set of aortic (Ao) and right atrial (RA) blood pressures. CPP was computed using each of the 6 calculation methods in an anesthetized pig model, instrumented with catheters with Cobe pressure transducers. Aortic and right atrial pressures were recorded continuously during electrically induced ventricular fibrillation and standard AHA CPR. CPP calculated from the same raw data set by the 6 calculation methods ranged from −1 (signifying retrograde blood flow) to 26 mmHg (mean ± SD of 15 ± 11 mmHg). The CPP achieved by standard closed chest CPR is typically reported as 10–20 mmHg. Within a single study the CPP values may be comparable; however, the CPP values for different studies may not be a reliable indicator of the efficacy of a given CPR method. Electronically derived true mean coronary perfusion pressure is arguably the gold standard method for representing coronary perfusion pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babbs CF. Interposed Abdominal Compression-CPR: a case study in cardiac arrest research. Ann Emerg Med. 1993;22:32/24-40/32.

  • Babbs CF. Design of near-optimal waveforms for chest and abdominal compression and decompression in CPR using a computer-simulated evolution. Resuscitation. 2006;68:277–93.

    Article  PubMed  Google Scholar 

  • Cairns CB, Niemann JT. Hemodynamic effects of repeated doses of epinephrine after prolonged cardiac arrest and CPR: preliminary observations in an animal model. Resuscitation. 1998;36:181–5.

    Article  PubMed  CAS  Google Scholar 

  • Cohen TJ, Tucker KJ, Redberg RF, Lurie KG, Chin MC, Dutton JP, et al. Active compression-decompression resuscitation: a novel method of cardiopulmonary resuscitation. Am Heart J. 1992;124:1145–50.

    Article  PubMed  CAS  Google Scholar 

  • Criley JM, Blaufuss AH, Kissel GL. Cough-induced cardiac compression: self-administered form of cardiopulmonary resuscitation. JAMA. 1976;236:1246–50.

    Article  PubMed  CAS  Google Scholar 

  • Fenely MP, Maier GW, Kern KB, Gaynor JW, Gall SA, Sanders AB, et al. Influence of compression rate on initial success of resuscitation and 24 h survival after prolonged manual cardiopulmonary resuscitation in dogs. Circulation. 1988;77:240–50.

    Google Scholar 

  • Fries M, Tang W, Chang YT, Wang J, Castillo C, Weil MH. Microvascular blood flow during cardiopulmonary resuscitation is predictive of outcome. Resuscitation. 2006;71:248–53.

    Article  PubMed  Google Scholar 

  • Geddes LA. Cardiovascular devices and their applications. New York: Wiley; 1984.

    Google Scholar 

  • Geddes LA, Rundell A, Lottes A, Kemeny A, Otlewski M. A new cardiopulmonary resuscitation method employing only rhythmic abdominal compression. a preliminary report. Am J Emerg Med. 2007;25:786–90.

    Article  PubMed  Google Scholar 

  • Halperin HR, Paradis N, Ornato JP, Zviman M, Lacorte J, Lardo A, et al. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest. improved hemodynamics and mechanisms. J Am Coll Cardiol. 2004;44:2214–20.

    Article  PubMed  Google Scholar 

  • Halperin HR, Tsitlik JE, Gelfand M, Weisfeldt ML, Gruben KG, Levin HR, et al. A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med. 1993;329:762–8.

    Article  PubMed  CAS  Google Scholar 

  • Halperin HR, Tsitlik JE, Guerci AD, Mellits ED, Levin HR, Shi AY, et al. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Circulation. 1986;73:539–50.

    PubMed  CAS  Google Scholar 

  • Jung E, Babbs CF, Lenhart S, Protopopscu VA. Optimal strategy for cardiopulmonary resuscitation with continuous chest compression. Acad Emerg Med. 2006;13:715–21.

    Article  PubMed  Google Scholar 

  • Kern KB. Coronary perfusion pressure during cardiopulmonary resuscitation. Baillière’s Clin Anesth. 2000;14:591–609.

    Google Scholar 

  • Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed-chest cardiac massage. JAMA. 1960;173:1064–7.

    PubMed  CAS  Google Scholar 

  • Lottes AE, Rundell AE, Geddes LA, Kemeny AE, Otlewski MP, Babbs CF. Sustained abdominal compression in standard CPR improves coronary perfusion pressure comparably to vasopressor drugs. Resuscitation. 2007;75:515–24.

    Article  PubMed  CAS  Google Scholar 

  • Lurie KG, Lindo C, Chin J. CPR: the P stands for plumber’s helper. JAMA. 1990;264:1661.

    Article  PubMed  CAS  Google Scholar 

  • Lurie KG, Voelckel WG, Zielinski T, McKnite S, Lindstrom P, Peterson C, et al. Improving standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve in a porcine model of cardiac arrest. Anesth Analg. 2001;93:649–55.

    Article  PubMed  CAS  Google Scholar 

  • Lurie KG, Zielinski T, McKnite S, Aufderheide T, Voelckel W. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation. 2002;105:124–9.

    Article  PubMed  Google Scholar 

  • Maier GW, Tyson GS, Olsen CO, Kernstein KH, Davis JW, Conn EH, et al. The physiology of external cardiac massage: high-impulse cardiopulmonary resuscitation. Circulation. 1984;70:86–101.

    PubMed  CAS  Google Scholar 

  • Mauer DK, Nolan J, Plaisance P, Sitter H, Benoit H, Stiell IG, et al. Effect of active compression-decompression resuscitation (ACD-CPR) on survival: a combined analysis using individual patient data. Resuscitation. 1999;41:249–56.

    Article  PubMed  CAS  Google Scholar 

  • Niemann JT, Criley JM, Rosborough JP, Niskanen RA, Alferness C. Predictive indices of successful cardiac resuscitation after prolonged arrest and experimental cardiopulmonary resuscitation. Ann Emerg Med. 1985;14:521–8.

    Article  PubMed  CAS  Google Scholar 

  • Niemann JT, Rosborough JP, Ung S, Criley JM. Coronary perfusion pressure during experimental cardiopulmonary resuscitation. Ann Emerg Med. 1982;11:127–31.

    Article  PubMed  CAS  Google Scholar 

  • Paradis NA, Martin GB, Rivers EP, Goetting MG, Appleton TJ, Feingold M, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263:1106–13.

    Article  PubMed  CAS  Google Scholar 

  • Raessler KL, Kern KB, Sanders AB, Tacker WA Jr, Ewy GA. Aortic and right atrial systolic pressures during cardiopulmonary resuscitation: a potential indicator of the mechanism of blood flow. Am Heart J. 1988;115:1021–9.

    Article  PubMed  CAS  Google Scholar 

  • Ralston SH, Babbs CF, Niebauer MJ. Cardiopulmonary resuscitation with interposed abdominal compression in dogs. Anesth Analg. 1982;61:645–51.

    Article  PubMed  CAS  Google Scholar 

  • Rubertsson S, Grenvik A, Zemgulis V, Wiklund L. Systemic perfusion pressure and blood flow before and after administration of epinephrine during experimental cardiopulmonary resuscitation. Crit Care Med. 1995;23:1984–96.

    Article  PubMed  CAS  Google Scholar 

  • Sanders AB, Ogle M, Ewy GA. Coronary perfusion pressure during cardiopulmonary resuscitation. Am J Emerg Med. 1985;3:11–4.

    Article  PubMed  CAS  Google Scholar 

  • Strohmenger HU, Lindner KH, Keller A, Lindner IM, Pfenninger E, Bothner U. Effects of graded doses of vasopressin on median fibrillation frequency in a porcine model of cardiopulmonary resuscitation: results of a prospective, randomized, controlled trial. Crit Care Med. 1996;24:1360–5.

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Weil MH, Schock RB, Sato Y, Jucas J, Sun S, et al. Phased chest and abdominal compression-decompression. a new option for cardiopulmonary resuscitation. Circulation. 1997;95:1335–40.

    PubMed  CAS  Google Scholar 

  • Voorhees WD, Babbs CF, Tacker WA. Regional blood flow during cardiopulmonary resuscitation in dogs. Crit Care Med. 1980;8:134–6.

    Article  PubMed  CAS  Google Scholar 

  • Wik L, Bircher NG, Safar P. A comparison of prolonged manual and mechanical external chest compression after cardiac arrest in dogs. Resuscitation. 1996;32:241–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported in part by National Institutes of Health (NIBIB Grant NGAR2IEBOO1540) and a grant from the Purdue Trask Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Otlewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otlewski, M.P., Geddes, L.A., Pargett, M. et al. Methods for Calculating Coronary Perfusion Pressure During CPR. Cardiovasc Eng 9, 98–103 (2009). https://doi.org/10.1007/s10558-009-9079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-009-9079-y

Keywords

Navigation