Skip to main content

Advertisement

Log in

Effects of 60Co gamma radiation dose on initial structural biomechanical properties of ovine bone—patellar tendon—bone allografts

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Gamma radiation is established as a procedure for inactivating bacteria, fungal spores and viruses. Sterilization of soft tissue allografts with high dose 60Co gamma radiation has been shown to have adverse effects on allograft biomechanical properties. In the current study, bone-patellar tendon-bone (BPTB) allografts from 32 mature sheep were divided into two treatment groups: low-dose radiation at 15 kGy (n = 16) and high-dose radiation at 25 kGy (n = 16) with the contralateral limb serving as a 0 kGy (n = 32) non-irradiated control. Half of the tendons from all treatment groups were biomechanically tested to determine bulk BPTB mechanical properties, cancellous bone compressive properties, and interference screw pull-out strength. The remaining tissues were prepared, implanted, and mechanically tested in an acute in vitro anterior crucial ligament (ACL) reconstruction. Low-dose radiation did not adversely affect mechanical properties of the tendon allograft, bone, or ACL reconstruction compared to internal non-irradiated control. However, high-dose radiation compromised bulk tendon load at failure and ultimate strength by 26.9 and 28.9%, respectively (P < 0.05), but demonstrated no negative effect on the cancellous bone compressive properties or interference screw pull-out strength. Our findings suggest that low dose radiation (15 kGy) does not compromise the mechanical integrity of the allograft tissue, yet high dose radiation (25 kGy) significantly alters the biomechanical integrity of the soft tissue constituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AATB (2008) Standards for tissue banking, 11th edn. American Association of Tissue Banks, McLean

    Google Scholar 

  • Balsly CR, Cotter AT et al (2008) Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank 9(4):289–298

    Article  PubMed  Google Scholar 

  • Butler DL, Grood ES et al (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 17(8):579–596

    Article  PubMed  CAS  Google Scholar 

  • Cornu O, Banse X et al (2000) Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 18(3):426–431

    Article  PubMed  CAS  Google Scholar 

  • Curran AR, Adams DJ et al (2004) The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts. Am J Sports Med 32(5):1131–1135

    Article  PubMed  Google Scholar 

  • Fideler BM, Vangsness CT Jr et al (1995) Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 23(5):643–646

    Article  PubMed  CAS  Google Scholar 

  • Gibbons MJ, Butler DL et al (1991) Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res 9(2):209–218

    Article  PubMed  CAS  Google Scholar 

  • Grieb TA, Forng RY et al (2005) Effective use of optimized, high-dose (50 kGy) gamma irradiation for pathogen inactivation of human bone allografts. Biomaterials 26(14):2033–2042

    Article  PubMed  CAS  Google Scholar 

  • Grieb TA, Forng RY et al (2006) High-dose gamma irradiation for soft tissue allografts: high margin of safety with biomechanical integrity. J Orthop Res 24(5):1011–1018

    Article  PubMed  Google Scholar 

  • Marrale J, Morrissey MC et al (2007) A literature review of autograft and allograft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 15(6):690–704

    Article  PubMed  Google Scholar 

  • McAllister DR, Joyce MJ et al (2007) Allograft update: the current status of tissue regulation, procurement, processing, and sterilization. Am J Sports Med 35(12):2148–2158

    Article  PubMed  Google Scholar 

  • Nguyen H, Morgan DA et al (2007) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8(2):93–105

    Article  PubMed  Google Scholar 

  • Prolo DJ, Pedrotti PW et al (1980) Ethylene oxide sterilization of bone, dura mater, and fascia lata for human transplantation. Neurosurgery 6(5):529–539

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen TJ, Feder SM et al (1994) The effects of 4 Mrad of gamma irradiation on the initial mechanical properties of bone-patellar tendon-bone grafts. Arthroscopy 10(2):188–197

    Article  PubMed  CAS  Google Scholar 

  • Salai M, Vonsover A et al (1997) Human immunodeficiency virus (HIV) inactivation of banked bone by gamma irradiation. Ann Transplant 2(1):55–56

    PubMed  CAS  Google Scholar 

  • Salehpour A, Butler DL et al (1995) Dose-dependent response of gamma irradiation on mechanical properties and related biochemical composition of goat bone-patellar tendon-bone allografts. J Orthop Res 13(6):898–906

    Article  PubMed  CAS  Google Scholar 

  • Simonian PT, Conrad EU et al (1994) Effect of sterilization and storage treatments on screw pullout strength in human allograft bone. Clin Orthop Relat Res (302):290–296

  • Smith RA, Ingels J et al (2001) Gamma irradiation of HIV-1. J Orthop Res 19(5):815–819

    Article  PubMed  CAS  Google Scholar 

  • Vangsness CT Jr, Triffon MJ et al (1996) Soft tissue for allograft reconstruction of the human knee: a survey of the American Association of Tissue Banks. Am J Sports Med 24(2):230–234

    Article  PubMed  Google Scholar 

  • Vangsness CT Jr, Garcia IA et al (2003) Allograft transplantation in the knee: tissue regulation, procurement, processing, and sterilization. Am J Sports Med 31(3):474–481

    PubMed  Google Scholar 

  • Vangsness CT Jr, Wagner PP et al (2006) Overview of safety issues concerning the preparation and processing of soft-tissue allografts. Arthroscopy 22(12):1351–1358

    Article  PubMed  Google Scholar 

  • Zhang Y, Homsi D et al (1994) A comprehensive study of physical parameters, biomechanical properties, and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. IV. Effect of gamma irradiation on mechanical and material properties. Spine 19(3):304–308

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Puttlitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGilvray, K.C., Santoni, B.G., Turner, A.S. et al. Effects of 60Co gamma radiation dose on initial structural biomechanical properties of ovine bone—patellar tendon—bone allografts. Cell Tissue Bank 12, 89–98 (2011). https://doi.org/10.1007/s10561-010-9170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-010-9170-z

Keywords

Navigation