Skip to main content
Log in

Aerobic Oxidation of Cyclic Amines to Lactams Catalyzed by Ceria-Supported Nanogold

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The oxidative transformation of cyclic amines to lactams, which are important chemical feedstocks, is efficiently catalyzed by CeO2-supported gold nanoparticles (Au/CeO2) and Aerosil 200 in the presence of an atmosphere of O2. The complete conversion of pyrrolidine was achieved in 6.5 h at 160 °C, affording a 97 % yield of the lactam product 2-pyrrolidone (γ-butyrolactam), while 2-piperidone (δ-valerolactam) was synthesized from piperidine (83 % yield) in 2.5 h. Caprolactam, the precursor to the commercially important nylon-6, was obtained from hexamethyleneimine in 37 % yield in 3 h. During the oxidation of pyrrolidine, two transient species, 5-(pyrrolidin-1-yl)-3,4-dihydro-2H-pyrrole (amidine-5) and 4-amino-1-(pyrrolidin-1-yl)butan-1-one, were observed. Both of these compounds were oxidized to 2-pyrrolidone under catalytic conditions, indicating their role as intermediates in the reaction pathway. In addition to the reactions of cyclic secondary amines, Au/CeO2 also efficiently catalyzes the oxidation of N-methyl cyclic tertiary amines to the corresponding lactams at 80 and 100 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Harreus A, Backes R, Eichler J-O, Feuerhake R, Jakel C, Mahn U, Vogelsang R (2011) 2-Pyrrolidone. In: Ullmann’s encyclopedia of industrial chemistry, pp 1–7

  2. Dahlhoff G, Niederer JPM, Hoelderich WF (2001) Catal Rev 43:381–441

    Article  CAS  Google Scholar 

  3. Estes L, Schweizer M (2011) Fibers, 4. polyamide fibers. In: Ullmann’s encyclopedia of industrial chemistry, pp 1–17

  4. Ledoux A, Kuigwa LS, Framery E, Andrioletti B (2015) Green Chem 17:3251–3254

    Article  CAS  Google Scholar 

  5. Tanielyan SK, More SR, Augustine RL, Tosukhowong T, Ozmeral C, Roffi K, Shmorhun M, Glas J (2014) Top Catal 57:1582–1587

    Article  CAS  Google Scholar 

  6. White JF, Holladay JE, Zacher AA, Frye JG, Werpy TA (2014) Top Catal 57:1325–1334

    Article  CAS  Google Scholar 

  7. Hashimoto K (2000) Prog Polym Sci 25:1411–1462

    Article  CAS  Google Scholar 

  8. Haaf F, Sanner A, Straub F (1985) Polym J 17:143–152

    Article  CAS  Google Scholar 

  9. Ye LW, Shu C, Gagosz F (2014) Org Biomol Chem 12:1833–1845

    Article  CAS  Google Scholar 

  10. Trost BM (1989) Angew Chem Int Ed Engl 28:1173–1192

    Article  Google Scholar 

  11. Janecki T (2013) β-Lactams. In: Natural lactones and lactams: synthesis, occurrence and biological activity. Wiley, Weinheim, pp 101–106

    Chapter  Google Scholar 

  12. Udipi K, Dave RS, Kruse RL, Stebbins LR (1997) Polymer 38:927–938

    Article  CAS  Google Scholar 

  13. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1179–1184

    Article  CAS  Google Scholar 

  14. Alger M (1997) Polymer science dictionary, 2nd edn. Chapman and Hall, London

    Google Scholar 

  15. Ravve A (2000) Principles of polymer chemistry, 2nd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  16. Kammerer C, Prestat G, Madec D, Poli G (2014) Acc Chem Res 47:3439–3447

    Article  CAS  Google Scholar 

  17. Ritz J, Fuchs H, Kieczka H, Moran WC (2011) Caprolactam. In: Ullmann’s encyclopedia of industrial chemistry, pp 2

  18. Sekiguchi H (1984) In: Ivin KJ, Saegusa T (eds) Ring-opening polymerization. Elsevier, London, p 809

    Google Scholar 

  19. Sebenda J (1972) J Macromol Sci Chem A 6:1145–1199

    Article  CAS  Google Scholar 

  20. Puffr R R, Stehlicek J J (1996) In: Salamone JC (ed) Encyclopedia of polymeric materials. CRC Press, Boca Raton

    Google Scholar 

  21. Thomas JM, Raja R (2005) Proc Natl Acad Sci USA 102:13732–13736

    Article  CAS  Google Scholar 

  22. Barton DHR, Boivin J, Gaudin D, Jankowski K (1989) Tetrahedron Lett 30:1381–1382

    Article  CAS  Google Scholar 

  23. Murata S, Miura M, Nomura M (1987) J Chem Soc Perkin Trans 1:1259–1262

    Article  Google Scholar 

  24. Legacy CJ, Emmert MH (2016) Synlett 27:A–E

    Google Scholar 

  25. Khusnutdinova JR, Ben-David Y, Milstein D (2014) J Am Chem Soc 136:2998–3001

    Article  CAS  Google Scholar 

  26. So MH, Liu YG, Ho CM, Che CM (2009) Chem Asian J 4:1551–1561

    Article  CAS  Google Scholar 

  27. Preedasuriyachai P, Chavasiri W, Sakurai H (2011) Synlett 1121–1124

  28. Miyamura H, Morita M, Inasaki T, Kobayashi S (2011) Bull Chem Soc Jpn 84:588–599

    Article  CAS  Google Scholar 

  29. Abad A, Concepcion P, Corma A, Garcia H (2005) Angew Chem Int Ed 44:4066–4069

    Article  CAS  Google Scholar 

  30. Grirrane A, Corma A, Garcia H (2008) Science 322:1661–1664

    Article  CAS  Google Scholar 

  31. Tamura M, Tomishige K (2015) Angew Chem Int Ed 54:864–867

    Article  CAS  Google Scholar 

  32. Perez Y, Aprile C, Corma A, Garcia H (2010) Catal Lett 134:204–209

    Article  CAS  Google Scholar 

  33. Aschwanden L, Mallat T, Krumeich F, Baiker A (2009) J Mol Catal A Chem 309:57–62

    Article  CAS  Google Scholar 

  34. Aschwanden L, Mallat T, Maciejewski M, Krumeich F, Baiker A (2010) ChemCatChem 2:666–673

    Article  CAS  Google Scholar 

  35. Grirrane A, Corma A, Garcia H (2009) J Catal 264:138–144

    Article  CAS  Google Scholar 

  36. Sudarsanam P, Selvakannan PR, Soni SK, Bhargava SK, Reddy BM (2014) RSC Adv 4:43460–43469

    Article  CAS  Google Scholar 

  37. Jin X, Kataoka K, Yatabe T, Yamaguchi K, Mizuno N (2016) Angew Chem Int Ed 55:7212–7217

    Article  CAS  Google Scholar 

  38. Zhu B, Angelici RJ (2007) Chem Commun 2157–2159

  39. Zhu B, Lazar M, Trewyn BG, Angelici RJ (2008) J Catal 260:1–6

    Article  CAS  Google Scholar 

  40. Klobukowski ER, Mueller ML, Angelici RJ, Woo LK (2011) ACS Catal 1:703–708

    Article  CAS  Google Scholar 

  41. Romeo M, Bak K, Elfallah J, Lenormand F, Hilaire L (1993) Surf Interface Anal 20:508–512

    Article  CAS  Google Scholar 

  42. Nelson NC, Manzano JS, Sadow AD, Overbury SH, Slowing II (2015) ACS Catal 5:2051–2061

    Article  CAS  Google Scholar 

  43. Purushothaman RKP, van Haveren J, van Es DS, Melian-Cabrera I, Meeldijk JD, Heeres HJ (2014) Appl Catal B 147:92–100

    Article  CAS  Google Scholar 

  44. Shen YH, Zhang SH, Li HJ, Ren Y, Liu HC (2010) Chem Eur J 16:7368–7371

    Article  CAS  Google Scholar 

  45. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray photoelectron spectroscopy database

  46. Casaletto MP, Longo A, Martorana A, Prestianni A, Venezia AM (2006) Surf Interface Anal 38:215–218

    Article  CAS  Google Scholar 

  47. Lazar M, Zhu B, Angelici RJ (2007) J Phys Chem C 111:4074–4076

    Article  CAS  Google Scholar 

  48. Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74–78

    Article  CAS  Google Scholar 

  49. Biella S, Castiglioni GL, Fumagalli C, Prati L, Rossi M (2002) Catal Today 72:43–49

    Article  CAS  Google Scholar 

  50. Murahashi SI, Naota T, Ito K, Maeda Y, Taki H (1987) J Org Chem 52:4319–4327

    Article  CAS  Google Scholar 

  51. Endo Y, Backvall JE (2011) Chem Eur J 17:12596–12601

    Article  CAS  Google Scholar 

  52. Paunovic V, Ordomsky VV, Sushkevich VL, Schouten JC, Nijhuis TA (2015) ChemCatChem 7:1161–1176

    Article  CAS  Google Scholar 

  53. Della Pina C, Falletta E, Rossi M (2007) Top Catal 44:325–329

    Article  CAS  Google Scholar 

  54. Klobukowski ER, Angelici RJ, Woo LK (2012) Catal Lett 142:161–167

    Article  CAS  Google Scholar 

  55. Rao GA, Periasamy M (2015) Synlett 26:2231–2236

    Article  CAS  Google Scholar 

  56. Li ZP, Bohle DS, Li CJ (2006) Proc Natl Acad Sci USA 103:8928–8933

    Article  CAS  Google Scholar 

  57. Fuentes L, Osorio U, Quintero L, Hopfl H, Vazquez-Cabrera N, Sartillo-Piscil F (2012) J Org Chem 77:5515–5524

    Article  CAS  Google Scholar 

  58. Boess E, Schmitz C, Klussmann M (2012) J Am Chem Soc 134:5317–5325

    Article  CAS  Google Scholar 

  59. Basle O, Li CJ (2007) Green Chem 9:1047–1050

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory (Contract No. DE-AC02-07CH11358). The authors thank Evonik Degussa Corporation for a generous donation of Aerosil 200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Keith Woo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2931 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dairo, T.O., Nelson, N.C., Slowing, I.I. et al. Aerobic Oxidation of Cyclic Amines to Lactams Catalyzed by Ceria-Supported Nanogold. Catal Lett 146, 2278–2291 (2016). https://doi.org/10.1007/s10562-016-1834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1834-2

Keywords

Navigation