Skip to main content
Log in

Self-Doped Cu-Deposited Titania Nanotubes as Efficient Visible Light Photocatalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Poor crystallinity and applications restricted to only UV region of titanate nanotubes (TNTs) generated numerous routes towards high surface area visible photocatalysts. In this study, TNTs were prepared via alkaline hydrothermal synthesis route followed by deposition of visible light sensitive CuO on their surface via photoreduction method under anoxic conditions. Photodeposited Cu(II) oxide was confirmed by means of EPR and DR-UV-Vis spectroscopy. Further annealing in 5% H2/N2 gas mixture introduced oxygen vacancies associated with Ti3+ defect sites, which additionally enhanced photocatalytic activity under visible light. Using such photocatalyst, almost complete inactivation of bacteria Escherichia coli was achieved within 60 min of illumination with visible light.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang LS, Xiao MW, Huang XJ, Wu YD (2009) J Hazard Mater 161:49

    Article  CAS  Google Scholar 

  2. Kitano M, Nakajima K, Kondo JN, Hayashi S, Hara M (2010) J Amer Chem Soc 132:6622

    Article  CAS  Google Scholar 

  3. Camposeco R, Castillo S, Navarrete J, Gomez R (2016) Catal Today 266:90

    Article  CAS  Google Scholar 

  4. Kim DH, Jang JS, Han SS, Lee KS, Choi SH, Umar A, Lee JW, Shin DW, Myung S-T, Lee JS, Kim S-J, Sun YK, Lee KS (2009) J Phys Chem C 113:14034

    Article  CAS  Google Scholar 

  5. Tang Z-R, Zhang Y, Xu Y-J (2012) ACS Appl Mater Interfaces 4:1512

    Article  CAS  Google Scholar 

  6. Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807

    Article  CAS  Google Scholar 

  7. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

  8. Erjavec B, Kaplan R, Djinović P, Pintar A (2013) Appl Catal B 132:342

    Article  Google Scholar 

  9. Hu W, Li L, Li G, Meng J, Tong W (2009) J Phys Chem C 113:16996

    Article  CAS  Google Scholar 

  10. Doong R-A, Chang S-M, Tsai C-W (2013) Appl Catal B 129:48

    Article  CAS  Google Scholar 

  11. Erjavec B, Kaplan R, Pintar A (2015) Catal Today 241:15

    Article  CAS  Google Scholar 

  12. Fang D, Luo Z, Huang K, Lagoudas DC (2011) Appl Surf Sci 257:6451

    Article  CAS  Google Scholar 

  13. Qamar M, Yoon CR, Oh HJ, Lee NH, Park K, Kim DH, Lee KS, Lee WJ, Kim SJ (2008) Catal Today 131:3

    Article  CAS  Google Scholar 

  14. Liao Y, Que W, Tang Z, Wang W, Zhao W (2011) J Alloys Compd 509:1054

    Article  CAS  Google Scholar 

  15. Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P (2010) J Amer Chem Soc 132:11856

    Article  CAS  Google Scholar 

  16. Zhang Z, Yang X, Hedhili MN, Ahmed E, Shi L, Wang P (2014) ACS Appl Mater Interfaces 6:691

    Article  CAS  Google Scholar 

  17. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) J Amer Chem Soc 134:3659

    Article  CAS  Google Scholar 

  18. Bharti B, Kumar S, Lee H-N, Kumar R (2016) Sci Rep 6:32355. doi:10.1038/srep32355

    Article  CAS  Google Scholar 

  19. Ohtsu N, Kodama K, Kitagawa K, Wagatsuma K (2010) Appl Surf Sci 256:4522

    Article  CAS  Google Scholar 

  20. Kimmel GA, Petrik NG (2008) Phys Rev Lett 100:196102

    Article  Google Scholar 

  21. Chen X, Liu L, Yu PY, Mao SS (2011) Science 331:746

    Article  CAS  Google Scholar 

  22. Jiang X, Zhang Y, Jiang J, Rong Y, Wang Y, Wu Y, Pan C (2012) J Phys Chem C 116:22619

    Article  CAS  Google Scholar 

  23. Chen X, Liu L, Huang F (2015) Chem Soc Rev 44:1861

    Article  CAS  Google Scholar 

  24. Tian M, Mahjouri-Samani M, Eres G, Sachan R, Yoon M, Chisholm MF, Wang K, Puretzky AA, Rouleau CM, Geohegan DB, Duscher G (2015) ACS Nano 9:10482

    Article  CAS  Google Scholar 

  25. Plodinec M, Gajović A, Jakša G, Žagar K, Čeh M (2014) Alloys Compd J 591:147

    Article  CAS  Google Scholar 

  26. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Nano Lett 11:3026

    Article  CAS  Google Scholar 

  27. Hu YH (2012) Angew Chem Int Ed 51:12410

    Article  CAS  Google Scholar 

  28. Choi J, Park H, Hoffmann MR (2010) J Phys Chem C 114:783

    Article  CAS  Google Scholar 

  29. Chiang L-F, Doong R-A (2014) J Hazard Mater 277:84

    Article  CAS  Google Scholar 

  30. Doong R-A, Tsai C-W, Liao C-I (2012) Sep Purif Technol 91:81

    Article  CAS  Google Scholar 

  31. Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2008) Catal Commun 9:1254

    Article  CAS  Google Scholar 

  32. Irie H, Kamiya K, Shibanuma T, Miura S, Tryk DA, Yokoyama T, Hashimoto K (2009) J Phys Chem C 113:10761

    Article  CAS  Google Scholar 

  33. Qiu X, Miyauchi M, Sunada K, Minoshima M, Liu M, Lu Y, Li D, Shimodaira Y, Hosogi Y, Kuroda Y, Hashimoto K (2012) ACS Nano 6:1609

    Article  CAS  Google Scholar 

  34. Litter MI (1999) Appl Catal B 23:89

    Article  CAS  Google Scholar 

  35. Doménech J, Prieto A (1986) Electroch Acta 31:1317

    Article  Google Scholar 

  36. Foster NS, Noble RD, Koval CA (1993) Environ Sci Technol 27:350

    Article  CAS  Google Scholar 

  37. Foster NS, Lancaster AN, Noble RD, Koval CA (1995) Ind Eng Chem Res 34:3865

    Article  CAS  Google Scholar 

  38. Bertani G (1951) J Bacteriol 62:293

    CAS  Google Scholar 

  39. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Adv Mater 11:1307

    Article  CAS  Google Scholar 

  40. Umek P, Cevc P, Jesih A, Gloter A, Ewels CP, Arcon D (2005) Chem Mater 17:5945

    Article  CAS  Google Scholar 

  41. Yang JJ, Jin ZS, Wang XD, Li W, Zhang JW, Zhang SL, Guo XY, Zhang ZJ (2003) Dalton Trans 20:3898

    Article  Google Scholar 

  42. Strunk J, Vining WC, Bell AT (2010) J Phys Chem C 114:16937

    Article  CAS  Google Scholar 

  43. Goodrow A, Bell AT (2008) J Phys Chem C 112:13204

    Article  CAS  Google Scholar 

  44. Wang C, Meng D, Sun J, Memon J, Huang Y, Geng J (2014) Adv Mater Interfaces 1. doi:10.1002/admi.201300150

  45. Berger T, Sterrer M, Diwald O, Knözinger E, Panayotov D, Thompson TL, Yates JT (2005) J Phys Chem B 109:6061

    Article  CAS  Google Scholar 

  46. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219

    Article  CAS  Google Scholar 

  47. Indrakanti VP, Schobert HH, Kubicki JD (2009) Energy Fuels 23:5247

    Article  CAS  Google Scholar 

  48. Ardelean I, Cora S, Rusu D (2008) Physica B 403:3682

    Article  CAS  Google Scholar 

  49. Gervasini A, Manzoli M, Martra G, Ponti A, Ravasio N, Sordelli L, Zaccheria F (2006) J Phys Chem B 110:7851

    Article  CAS  Google Scholar 

  50. Klaas J, Schulz-Ekloff G, Jaeger NI (1997) J Phys Chem B 101:1305

    Article  CAS  Google Scholar 

  51. Zabilskiy M, Djinović P, Tchernychova E, Tkachenko OP, Kustov LM, Pintar A (2015) ACS Catal 5:5357

    Article  CAS  Google Scholar 

  52. Vranješ M, Šaponjić ZV, Živković LS, Despotović VN, Šojić DV, Abramović BF, Čomor MI (2014) Appl Catal B 160–161:589

    Article  Google Scholar 

  53. Faraji M, Mohaghegh N (2016) Surf Coat Technol 288:144

    Article  CAS  Google Scholar 

  54. Qu A, Xie H, Xu X, Zhang Y, Wen S, Cui Y (2016) Appl Surf Sci 375:230

    Article  CAS  Google Scholar 

  55. Anpo M, Che M, Fubini B, Garrone E, Giamello E, Paganini M (1999) Top Catal 8:189

    Article  CAS  Google Scholar 

  56. Park D-R, Zhang J, Ikeue K, Yamashita H, Anpo M (1999) J Catal 185:114

    Article  CAS  Google Scholar 

  57. Suriye K, Praserthdam P, Jongsomjit B (2007) Appl Surf Sci 253:3849

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Ministry of Education, Science and Sport of the Republic of Slovenia through Research Program No. P2-0150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Tišler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 262 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erjavec, B., Tišler, T., Tchernychova, E. et al. Self-Doped Cu-Deposited Titania Nanotubes as Efficient Visible Light Photocatalyst. Catal Lett 147, 1686–1695 (2017). https://doi.org/10.1007/s10562-017-2073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2073-x

Keywords

Navigation