Skip to main content
Log in

Extracting Chemical Information from XPS Spectra: A Perspective

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Important mechanisms that lead to features, often complex, in X-ray photoelectron spectroscopy (XPS) spectra are defined and described. It is shown that there is much information in an XPS spectrum that can be obtained by examining these features rather than examining only the shifts of main peaks between different materials. These mechanisms are presented with a focus on describing the underlying chemical and physical phenomena responsible for features of the XPS and on showing how these XPS features can be related to the properties and electronic structure of the material studied. While it is necessary to consider certain quantum mechanical rules, the mathematical formalism is not discussed. However, a general awareness of multiplet splittings, which are a result of angular momentum coupling combined with ligand field and spin–orbit splittings, and of covalent mixings in the metal–ligand bond of oxides is essential to properly interpret the significance of XPS features. A conceptual framework of shake excitation from bonding to anti-bonding orbitals is introduced to provide an understanding of the significance of XPS satellites. While the coupling of theory and measurement is required to extract quantitative information from XPS, it may be possible to obtain useful qualitative information directly from features of the XPS spectra provided that one takes into account more than only shifts of the XPS binding energies.

Graphical Abstract

A correct analysis of XPS features may require a careful treatment of many-body effects that distribute intensity over many individual, unresolved final states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. CLIPS is a program system to compute ab initio SCF and correlated wavefunctions for polyatomic systems. It has been developed based on the publicly available programs in the ALCHEMY package from the IBM San Jose Research Laboratory by P. S. Bagus, B. Liu, A. D. McLean, and M.Yoshimine.

  2. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC08 (2008), written by L. Visscher, H. J. Aa. Jensen, and T. Saue, with new contributions from R. Bast, S. Dubillard, K. G. Dyall, U. Ekström, E. Eliav, T. Fleig, A. S. P. Gomes, T. U. Helgaker, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, P. Norman, J. Olsen, M. Pernpointner, K. Ruud, P. Sałek, and J. Sikkema (see the URL at http://dirac.chem.sdu.dk).

References

  1. Siegbahn K, Nordling C, Fahlman A, Nordberg R, Hamrin K, Hedman J, Johansson G, Bergmark T, Karlsson SE, Lindgren I, Lindberg B (1967) ESCA-atomic, molecular, and solid state structure studied by means of electron spectroscopy. Almqvist and Wiksells, Uppsala

    Google Scholar 

  2. Siegbahn K, Nordling C, Johansson G, Hedman J, Hedén PF, Hamrin K, Gelius U, Bergmark T, Werme LO, Manne R, Baer Y (1969) ESCA-applied to free molecules. North-Holland, Amsterdam

    Google Scholar 

  3. Fadley CS, Brundle CR, Baker AD, (1978) Electron spectroscopy: theory, techniques and applications, vol 2, Academic Press, New York, p 2

    Google Scholar 

  4. Barr TL (1994) The principles and practice of X-ray photoelectron spectroscopy. Taylor and Francis, London

    Google Scholar 

  5. Bagus PS, Ilton ES, Nelin CJ (2013) Surf Sci Rep 68:273

    Article  CAS  Google Scholar 

  6. Freund HJ (1995) Phys Status Solidi (b) 192:407

    Article  CAS  Google Scholar 

  7. Freund H-J, Pacchioni G (2008) Chem Soc Rev 37:2224

    Article  CAS  PubMed  Google Scholar 

  8. Henry CR (1998) Surf Sci Rep 31:231

    Article  CAS  Google Scholar 

  9. Netzer F, Fortunelli A (2016) Oxide materials at the two-dimensional limit. Springer, Cham

    Book  Google Scholar 

  10. Barr TL, Ying Li L (1989) J Phys Chem Solids 50:657

    Article  CAS  Google Scholar 

  11. van Setten MJ, Costa R, Viñes F, Illas F (2018) J Chem Theory Comput 14:877

    Article  CAS  PubMed  Google Scholar 

  12. Pueyo Bellafont N, Bagus PS, Illas F (2015) J Chem Phys 142:214102

    Article  CAS  PubMed  Google Scholar 

  13. Pueyo Bellafont N, Viñes F, Illas F (2016) J Chem Theory Comput 12:324

    Article  CAS  PubMed  Google Scholar 

  14. Slater JC (1960) Quantum theory of atomic structure. vols I, II. McGraw-Hill, New York

    Google Scholar 

  15. Bagus PS, Nelin CJ (2014) J Electron Spectrosc Relat Phenom 194:37

    Article  CAS  Google Scholar 

  16. Bagus PS, Nelin CJ, Hrovat DA, Ilton ES (2017) J Chem Phys 146:134706

    Article  CAS  PubMed  Google Scholar 

  17. Bagus P, Brundle CR, Nelin CJ J Chem Phys (to be submitted)

  18. Bagus PS, Pacchioni G, Parmigiani F (1991) Phys Rev B 43:5172

    Article  CAS  Google Scholar 

  19. Ilton ES, Bagus PS (2011) Surf Interface Anal 43:1549

    Article  CAS  Google Scholar 

  20. Sangaletti L, Parmigiani F, Bagus PS (2002) Phys Rev B 66:115106

    Article  CAS  Google Scholar 

  21. Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409:307

    Article  CAS  Google Scholar 

  22. Mullins DR, Radulovic PV, Overbury SH (1999) Surf Sci 429:186

    Article  CAS  Google Scholar 

  23. Aberg T (1967) Phys Rev 156:35

    Article  CAS  Google Scholar 

  24. Manne R, Åberg T (1970) Chem Phys Lett 7:282

    Article  CAS  Google Scholar 

  25. Okada K, Kotani A, Thole BT (1992) J Electron Spectrosc Relat Phenom 58:325

    Article  CAS  Google Scholar 

  26. Okada K, Kotani A (1992) J Phys Soc Jpn 61:4619

    Article  CAS  Google Scholar 

  27. de Groot FMF (1994) J Electron Spectrosc Relat Phenom 67:529

    Article  Google Scholar 

  28. Jolly WL (1972) In: Shirley DA, Proceedings of the international conference on electron spectroscopy, North-Holland Amsterdam, Netherlands, p 629

  29. Koepke JW, Jolly WL (1976) J Electron Spectrosc Relat Phenom 9:413

    Article  CAS  Google Scholar 

  30. Iwan M, Kunz C (1977) Phys Lett A 60A:345

    Article  CAS  Google Scholar 

  31. Citrin PH, Eisenberger P, Hamann DR (1974) Phys Rev Lett 33:965

    Article  CAS  Google Scholar 

  32. Cederbaum LS, Domcke W (1976) J Chem Phys 64:603

    Article  CAS  Google Scholar 

  33. Steinruck HP, Fuhrmann T, Papp C, Trankenschuh B, Denecke R (2006) J Chem Phys 125

  34. Seah MP (1999) Surf Sci 420:285

    Article  CAS  Google Scholar 

  35. Seah MP, Gilmore IS, Spencer SJ (2000) Surf Sci 461:1

    Article  CAS  Google Scholar 

  36. Shirley DA (1972) Phys Rev B 5:4709

    Article  Google Scholar 

  37. Gupta RP, Sen SK (1974) Phys Rev B 10:71

    Article  CAS  Google Scholar 

  38. Gupta RP, Sen SK (1975) Phys Rev B 12:15

    Article  CAS  Google Scholar 

  39. Bagus PS, Broer R, de Jong WA, Nieuwpoort WC, Parmigiani F, Sangaletti L (2000) Phys Rev Lett 84:2259

    Article  CAS  PubMed  Google Scholar 

  40. Bagus PS, Ilton ES (2006) Phys Rev B 73:155110

    Article  CAS  Google Scholar 

  41. Bagus PS, Mallow JV (1994) Chem Phys Lett 228:695

    Article  CAS  Google Scholar 

  42. Bagus PS, Nelin CJ, Sassi M, Ilton ES, Rosso KM (2018) Phys Chem Chem Phys 20:4396

    Article  CAS  PubMed  Google Scholar 

  43. Visscher L, Visser O, Aerts PJC, Merenga H, Nieuwpoort WC (1994) Comput Phys Commun 81:120

    Article  CAS  Google Scholar 

  44. Bagus PS, Illas F, Casanovas J, JimenezMateos JM (1997) J Electron Spectrosc Relat Phenom 83:151

    Article  CAS  Google Scholar 

  45. Bagus PS, Illas F (1992) J Chem Phys 96:8962

    Article  CAS  Google Scholar 

  46. Bagus PS, Illas F, Casanovas J (1997) Chem Phys Lett 272:168

    Article  CAS  Google Scholar 

  47. Bagus PS, Sousa C, Illas F (2016) J Chem Phys 145:144303

    Article  CAS  PubMed  Google Scholar 

  48. Zakrzewski VG, Ortiz JV, Nichols JA, Heryadi D, Yeager DL, Golab JT (1996) Int J Quantum Chem 60:29

    Article  Google Scholar 

  49. Ortiz JV (2013) Wiley Interdiscip Rev Comput Mol Sci 3:123

    Article  CAS  Google Scholar 

  50. Mulliken RS (1949) J Chim Phys 46:497

    Article  CAS  Google Scholar 

  51. Bagus PS, Schaefer HF (1971) J Chem Phys 55:1474

    Article  CAS  Google Scholar 

  52. Cox PA (1975) Mol Phys 30:389

    Article  CAS  Google Scholar 

  53. Nelin CJ, Bagus PS, Brown MA, Sterrer M, Freund H-J (2011) Angew Chem Int Ed 50:10174

    Article  CAS  Google Scholar 

  54. Hohlneicher G, Pulm H, Freund HJ (1985) J Electron Spectrosc Relat Phenom 37:209

    Article  CAS  Google Scholar 

  55. Richter B, Kuhlenbeck H, Freund HJ, Bagus PS (2004) Phys Rev Lett 93:026805

    Article  CAS  PubMed  Google Scholar 

  56. Bagus PS, Wieckowski A, Freund HJ (2006) Chem Phys Lett 420:42

    Article  CAS  Google Scholar 

  57. Kaden WE, Büchner C, Lichtenstein L, Stuckenholz S, Ringleb F, Heyde M, Sterrer M, Freund H-J, Giordano L, Pacchioni G, Nelin CJ, Bagus PS (2014) Phys Rev B 89:115436

    Article  CAS  Google Scholar 

  58. de Groot F (2001) Chem Rev 101:1779

    Article  CAS  PubMed  Google Scholar 

  59. de Groot FMF, Glatzel P, Bergmann U, van Aken PA, Barrea RA, Klemme S, Hävecker M, Knop-Gericke A, Heijboer WM, Weckhuysen BM (2005) J Phys Chem B 109:20751

    Article  CAS  PubMed  Google Scholar 

  60. Kowalska JK, Nayyar B, Rees JA, Schiewer CE, Lee SC, Kovacs JA, Meyer F, Weyhermüller T, Otero E, DeBeer S (2017) Inorg Chem 56:8147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Veal BW, Paulikas AP (1983) Phys Rev Lett 51:1995

    Article  CAS  Google Scholar 

  62. Veal BW, Paulikas AP (1985) Phys Rev B 31:5399

    Article  CAS  Google Scholar 

  63. Jolly WL, Hendrickson DN (1970) J Am Chem Soc 92:1863

    Article  CAS  Google Scholar 

  64. Herzberg G (1950) Molecular spectra and molecular structure. vol I. Van Nostrand, Princeton

    Google Scholar 

  65. Bethe HA, Salpeter EW (1957) Quantum mechanics of one- and two-electron atoms. Academic Press, New York

    Book  Google Scholar 

  66. Löwdin PO (1955) Phys Rev 97:1474

    Article  Google Scholar 

  67. Hermsmeier BD, Fadley CS, Sinkovic B, Krause MO, Jimenez-Mier J, Gerard P, Carlson TA, Manson ST, Bhattacharya SK (1993) Phys Rev B 48:12425

    Article  CAS  Google Scholar 

  68. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Article  CAS  Google Scholar 

  69. Siegbahn PEM, Almlof J, Heiberg A, Roos BO (1981) J Chem Phys 74:2384

    Article  CAS  Google Scholar 

  70. Nelin C, Roos BO, Sadlej AJ, Siegbahn PEM (1982) J Chem Phys 77:3607

    Article  CAS  Google Scholar 

  71. Bagus PS, Broer R, Parmigiani F (2006) Chem Phys Lett 421:148

    Article  CAS  Google Scholar 

  72. Viinikka E-K, Öhrn Y (1975) Phys Rev B 11:4168

    Article  CAS  Google Scholar 

  73. Bagus PS, Freeman AJ, Sasaki F (1973) Phys Rev Lett 30:850

    Article  CAS  Google Scholar 

  74. Gubner JA (1994) J Phys A 27:L745

    Article  Google Scholar 

  75. Bagus PS, Nelin CJ, Brundle CR, Chambers SA (in preparation) J Phys Chem C

  76. Campbell JL, Papp T (2001) At Data Nucl Data Tables 77:1

    Article  CAS  Google Scholar 

  77. Prosser F, Hagstrom S (1968) Int J Quantum Chem 2:89

    Article  CAS  Google Scholar 

  78. Moore KT, van der Laan G (2009) Rev Mod Phys 81:235

    Article  CAS  Google Scholar 

  79. Altmann SL, Herzig P (1994) Point-group theory tables. Clarendon Press, Oxford

    Google Scholar 

  80. Boca R (2012) A handbook of magnetochemical formulae. Elsevier, Amsterdam

    Google Scholar 

  81. Bagus PS, Schrenk M, Davis DW, Shirley DA (1974) Phys Rev A 9:1090

    Article  CAS  Google Scholar 

  82. Desclaux JP (1974) At Data Nucl Data Tables 12:311

    Article  Google Scholar 

  83. Nelin CJ, Bagus PS, Brundle CR, Ilton ES, Rosso KM J Chem Phys (to be submitted)

  84. Kotani A (1999) J Electron Spectrosc Relat Phenom 100:75

    Article  CAS  Google Scholar 

  85. Griffith JS (1971) The theory of transition-metal ions. Cambridge Press, Cambridge

    Google Scholar 

  86. Droubay T, Chambers SA (2001) Phys Rev B 64:205414

    Article  CAS  Google Scholar 

  87. Chambers SA, Engelhard MH, Wang L, Droubay TC, Bowden ME, Wahila MJ, Quackenbush NF, Piper LFJ, Lee T-L, Nelin CJ, Bagus PS (2017) Phys Rev B 96:205143

    Article  Google Scholar 

  88. Ilton ES, Du Y, Stubbs JE, Eng PJ, Chaka AM, Bargar JR, Nelin CJ, Bagus PS (2017) Phys Chem Chem Phys 19:30473

    Article  CAS  PubMed  Google Scholar 

  89. Bagus PS, Nelin CJ, Ilton ES (2013) J Chem Phys 139:244704

    Article  CAS  PubMed  Google Scholar 

  90. Slater JC (1930) Phys Rev 36:57

    Article  CAS  Google Scholar 

  91. Chambers SA (2016) In: Woicik JC (ed) Hard X-ray photoelectron spectroscopy (HAXPES), vol 59. Springer, Heidelberg, p 341

    Chapter  Google Scholar 

  92. Bagus PS, Pacchioni G, Sousa C, Minerva T, Parmigiani F (1992) Chem Phys Lett 196:641

    Article  CAS  Google Scholar 

  93. Sousa C, Minerva T, Pacchioni G, Bagus PS, Parmigiani F (1993) J Electron Spectrosc Relat Phenom 63:189

    Article  CAS  Google Scholar 

  94. Egelhoff WF (1987) Surf Sci Rep 6:253

    Article  Google Scholar 

  95. Nelin CJ, Uhl F, Staemmler V, Bagus PS, Fujimori Y, Sterrer M, Kuhlenbeck H, Freund H-J (2014) Phys Chem Chem Phys 16:21953

    Article  CAS  PubMed  Google Scholar 

  96. Levine IN (2000) Quantum chemistry. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division through the Geosciences program at Pacific Northwest National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Bagus.

Appendix: List of Acronyms and Abbreviations

Appendix: List of Acronyms and Abbreviations

  1. 1.

    BE binding energy. The binding energy of an electron associated with a photoelectron peak.

  2. 2.

    CI configuration interaction wavefunctions. This is a wavefunction that mixes determinants for different orbital occupations. In the limit of a large expansion, it provides exact properties and energies.

  3. 3.

    CT charge transfer. In the present context it is used to refer to promotion of an electron from a dominantly ligand orbital into a dominantly metal, or cation, orbital.

  4. 4.

    ΔSCF delta self-consistent field. Usually used to contrast a BE obtained by taking the difference of two variational calculations from those obtained using an initial state, or Koopmans’ Theorem approximation.

  5. 5.

    DHF Dirac Hartree-Fock, see HF below, for relativistic Dirac Hartree-Fock wavefunctions and properties.

  6. 6.

    ECA equivalent core approximation. Developed by Jolly to model the valence orbital relation by replacing a core ionized atom by the cation with the nuclear charge increased by 1.

  7. 7.

    FO frozen orbital. Normally FO describes a wavefunction where the orbitals are fixed or “frozen” as they were for a different set of orbital occupations. Especially for XPS, the orbitals are not permitted to relax or screen a core–hole created on an atom.

  8. 8.

    FWHM full width at half-maximum.

  9. 9.

    HF Hartree-Fock. This describes the wavefunctions and other properties obtained from solution of the Hartree-Fock variational equations. This is normally used to describe non-relativistivic wavefunctions as contrasted with DHF, see above.

  10. 10.

    MAD maximum average deviation

  11. 11.

    MAE mean absolute error

  12. 12.

    SA sudden approximation. An approximation for the relative intensity of XPS peaks. The approximation is exact in the limit of high photon energy.

  13. 13.

    SCF self consistent field. SCF can describe a wavefunction obtained from an SCF numerical method of the methodology itself.

  14. 14.

    SCLS surface core level shifts. The difference of the core-level BE of an atom at the surface of a crystal from that of an atom in the bulk. The sign is generally taken so that SCLS > 0 indicates that the BE of an atom at the surface is larger than the BE of an atom in the bulk of a crystal.

  15. 15.

    WF wavefunction

  16. 16.

    XPS X-ray photoelectron spectroscopy. We use this acronym to describe the physical process as well as the spectroscopy rather than creating another acronym as is sometimes done, using XP to distinguish the process from the spectroscopy. Thus “XPS spectra” is used in the text to describe spectra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagus, P.S., Ilton, E. & Nelin, C.J. Extracting Chemical Information from XPS Spectra: A Perspective. Catal Lett 148, 1785–1802 (2018). https://doi.org/10.1007/s10562-018-2417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2417-1

Keywords

Navigation