Skip to main content
Log in

Optimization of Lipase Production by Response Surface Methodology and Its Application for Efficient Biodegradation of Polyester vylon-200

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Lipase-mediated polymer degradation is a robust alternative approach to conventional methods due to biocompatibility and mild conditions. In the present study, response surface methodology was applied to improve the production of lipase from Penicillium fellutanum by optimization of various process parameters. Under the optimized bioprocess conditions of pH 5.0, incubation time 24 h, temperature 35 °C, and lactose as an additional carbon source in 40 experimental runs, the maximum lipase titer of 1038.86 U/gds was achieved, 2.05-fold higher than the lipase yield in basal medium. All the linear and interactive coefficients (except linear carbon source) were found significant by analysis of variance. The as-synthesized cell-free lipase extract was partially purified by ammonium sulfate fractionation and dialysis (2.06-folds, 272.37 U/mg proteins) and applied to the degradation of polyester vylon 200. The biocatalytic action of the enzyme results in an 81% weight loss of PV-200 after 7 days of incubation at pH 7.5 and 35 °C. Different characterization techniques, i.e., SEM, FT-IR, and DSC corroborated the lipase-catalyzed degradation of PV-200. The untreated polyester film had a smooth surface, while after enzymatic treatment, deformities and various micron-sized holes and cracks appeared on the film surface. In conclusion, the outcomes of study display a high potential of lipase as green and ecofriendly biocatalyst for efficient degradation and depolymerization of polyester for environmental safety.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M et al (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res 25(8):7287–7298

    Article  CAS  Google Scholar 

  3. Sehar S, Sher F, Zhang S, Khalid U, Sulejmanović J, Lima EC (2020) Thermodynamic and kinetic study of synthesised graphene oxide-CuO nanocomposites: a way forward to fuel additive and photocatalytic potentials. J Mol Liq 313:113494

    Article  CAS  Google Scholar 

  4. Kausar A, Sher F, Hazafa A, Javed A, Sillanpää M, Iqbal M (2020) Biocomposite of sodium-alginate with acidified clay for wastewater treatment: kinetic, equilibrium and thermodynamic studies. Int J Biol Macromol 161:1272–1285

    Article  CAS  PubMed  Google Scholar 

  5. Rashid T, Iqbal D, Hazafa A, Hussain S, Sher F, Sher F (2020) Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment. J Environ Chem Eng 8(4):104023

    Article  CAS  Google Scholar 

  6. Zheng Y, Yanful EK, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25(4):243–250

    Article  CAS  PubMed  Google Scholar 

  7. Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214(2):159–174

    Article  CAS  Google Scholar 

  8. Zaikov GE, Lomakin SM (2002) Ecological issue of polymer flame retardancy. J Appl Polym Sci 86(10):2449–2462

    Article  CAS  Google Scholar 

  9. Royer SJ, Ferrón S, Wilson ST, Karl DM (2018) Production of methane and ethylene from plastic in the environment. PLoS ONE 13(8):e0200574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Al-Rawi UA, Sher F, Hazafa A, Rasheed T, Al-Shara NK, Lima EC, Shanshool J (2020) Catalytic activity of Pt loaded zeolites for hydroisomerization of n-hexane using supercritical CO2. Ind Eng Chem Res 59(51):22092–22106

    Article  CAS  Google Scholar 

  11. Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12(3):242–247

    Article  CAS  PubMed  Google Scholar 

  12. Loredo-Treviño A, Gutiérrez-Sánchez G, Rodríguez-Herrera R, Aguilar CN (2012) Microbial enzymes involved in polyurethane biodegradation: a review. J Polym Environ 20(1):258–265

    Article  CAS  Google Scholar 

  13. Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21(2):575–579

    Article  CAS  Google Scholar 

  14. Suzuki M, Tachibana Y, Oba K, Takizawa R, Kasuya KI (2018) Microbial degradation of poly (ε-caprolactone) in a coastal environment. Polym Degrad Stab 149:1–8

    Article  CAS  Google Scholar 

  15. Khan I, Nagarjuna R, Dutta JR, Ganesan R (2019) Enzyme-embedded degradation of poly (ε-caprolactone) using lipase-derived from probiotic Lactobacillus plantarum. ACS Omega 4(2):2844–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    Article  CAS  PubMed Central  Google Scholar 

  17. Ahmed T (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res Int 25:7287–7298

    Article  CAS  PubMed  Google Scholar 

  18. Lam XF, Hutmacher DW, Schantz J, Woodruff MA (2008) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 90:906–919

    Google Scholar 

  19. Iram D, Riaz R, Iqbal RK (2019) Usage of potential micro-organisms for degradation of plastics. Open J Environ Biol 4(1):007–0015

    Google Scholar 

  20. Mehta A, Bodh U, Gupta R (2017) Fungal lipases: a review. Journal of Biotech Research 8:58–77

    CAS  Google Scholar 

  21. Rehman S, Bhatti HN, Bilal M, Asgher M, Wang P (2017) Catalytic, kinetic, and thermodynamic characteristics of an extracellular lipase from Penicillium notatum. Catal Lett 147(1):281–291

    Article  CAS  Google Scholar 

  22. Selvakumar P, Sivashanmugam P (2017) Optimization of lipase production from organic solid waste by anaerobic digestion and its application in biodiesel production. Fuel Process Technol 165:1–8

    Article  CAS  Google Scholar 

  23. Zhu J, Liu Y, Qin Y, Shen N, Li Y, Liang G, Wang Q (2018) Optimization of a molasses based fermentation medium for lipases from Burkholderiasp. Bps1 based on response surface methodology. Food Sci Technol Res 24(5):757–765

    Article  CAS  Google Scholar 

  24. Marques TA, Baldo C, Borsato D, Buzato JB, Celligo MAPC (2014) Production and partial characterization of a thermostable, alkaline and organic solvent tolerant lipase from Trichoderma atroviride 676. Int J Sci Technol Res 3(5):77–83

    Google Scholar 

  25. Niyonzima FN, More S (2014) Biochemical properties of the alkaline lipase of Bacillus flexus XJU-1 and its detergent compatibility. Biologia 69(9):1108–1117

    Article  CAS  Google Scholar 

  26. Rehman S, Haq NB, Ijaz AB, Muhammad A (2011) Optimization of process parameters for enhanced production of lipase by Penicillium notatum using agricultural wastes. Afr J Biotechnol 10:19580–19589

    CAS  Google Scholar 

  27. Helal SE, Hemmat MA, Khadiga AA, Hassan MG, Mahmoud MA (2017) Evaluation of factors affecting the fungal lipase production using one factor at a time approach and response surface methodology. Egypt J Microbiol 52:1–16

    Google Scholar 

  28. Rehman S, Bhatti HN, Bilal M, Asgher M (2019) Optimization of process variables for enhanced production of extracellular lipase by Pleurotus ostreatus IBL-02 in solid-state fermentation. Pak J Pharm Sci 32(2):617–624

    CAS  PubMed  Google Scholar 

  29. Kishan G, Gopalakannan P, Muthukumaran C, Muthukumaresan KT, Kumar MD, Tamilarasan K (2013) Statistical optimization of critical medium components for lipase production from Yarrowia polytica (MTCC 35). J Gen Eng Biotechnol 11:111–116

    Article  Google Scholar 

  30. Asgher M, Khan SW, Bilal M (2016) Optimization of lignocellulolytic enzyme production by Pleurotus eryngii WC 888 utilizing agro-industrial residues and bio-ethanol production. Roman Biotechnol Lett 21(1):11133

    CAS  Google Scholar 

  31. Asgher M, Ijaz A, Bilal M (2016) Lignocellulose-degrading enzyme production by Pleurotus sapidus WC 529 and its application in lignin degradation. Turk J Biochem 41(1):26–36

    Article  Google Scholar 

  32. Asgher M, Wahab A, Bilal M, Iqbal HM (2016) Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatal Agric Biotechnol 1(6):195–201

    Article  Google Scholar 

  33. Lima LGR, Gonçalves MM, Couri S, Melo VF, Sant’Ana GCF, da Costa ACA (2019) Lipase production by Aspergillus niger by submerged fermentation. Braz Arch Biol Technol 62:1–14

    Article  Google Scholar 

  34. Amin F, Bhatti HN, Bilal M, Asgher M (2017) Multiple parameter optimizations for enhanced biosynthesis of exo-polygalacturonase enzyme and its application in fruit juice clarification. Int J Food Eng. https://doi.org/10.1515/ijfe-2016-0256

    Article  Google Scholar 

  35. Adetunji AI, Olaniran AO (2018) Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai SE3-PB using response surface methodology. Biotechnol Biotechnol Equip 32(6):1514–1526

    Article  CAS  Google Scholar 

  36. Peng H, Tan J, Bilal M, Wang W, Hu H, Zhang X (2018) Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs. World J Microbiol Biotechnol 34(9):129

    Article  PubMed  CAS  Google Scholar 

  37. Lo CF, Yu CY, Kuan IC, Lee SL (2012) Optimization of lipase production by Burkholderia sp. using response surface methodology. Int J Mol Sci 13:14889–14897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  39. Bhatti HN, Asgher M, Abbas A, Nawaz R, Sheikh MA (2006) Studies on kinetics and thermostability of novel acid invertase from Fusarium solani. J Agric Food Chem 54:4617–4623

    Article  CAS  PubMed  Google Scholar 

  40. Kousha M, Daneshvar E, Dopeikar H, Taghavi D, Bhatnagar A (2012) Box-Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chem Eng J 179:158–168

    Article  CAS  Google Scholar 

  41. Haider MA, Pakshirajan K (2007) Screening and optimization of media constituents for enhancing lipolytic activity by a soil microorganism using statistically designed experiments. Appl Biochem Biotechnol 141:377–390

    Article  CAS  PubMed  Google Scholar 

  42. Osho MB, Popoola T, Adeleye TM, Adetuji MC (2016) Response surface methodology for optimal immobilzation of Aspergillus niger ATCC 1015 lipase by adsorption method. Int J Biol Res 4(1):56–63

    Article  Google Scholar 

  43. Wang W, Yuan T, Wang K, Cui B, Dai Y (2012) Statistical optimization of cellulase production by the brown rot fungi, Fomitopsis palustris, and its application in the enzymatic hydrolysis of LHW pretreated woody biomass. Process Biochem 47:2552–2556

    Article  CAS  Google Scholar 

  44. Montgomery DC (2010) Design and analysis of experiments, 7th edn. Wiley India Pvt Ltd, New Delhi

    Google Scholar 

  45. Muralidhar RV, Chirumamila RR, Marchant R, Nigam P (2001) A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem Eng J 9:17–23

    Article  CAS  Google Scholar 

  46. Bhatti HN, Rashid MH, Nawaz R, Asgher M, Perveen R, Jabbar A (2007) Optimization of media for enhanced glucoamylase production in solid-state fermentation by Fusarium solani. Food Technol Biotechnol 45:51–56

    CAS  Google Scholar 

  47. Faisal PA, Hareesh ES, Priji P, Unni KN, Sajith S, Sreedevi S, Josh MS, Benjamin S (2014) Optimization of parameters for the production of lipase from Pseudomonas sp. BUP6 by solid state fermentation. Adv Enzyme Res 2:125–133

    Article  CAS  Google Scholar 

  48. Kumari A, Mahapatra P, Banerjee R (2009) Statistical optimization of culture conditions by response surface methodology for synthesis of lipase with Enterobacter aerogenes. Braz Arch Biol Technol 52(6):1349–1356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Higher Education Commission (HEC) of Pakistan for financial assistance under the Indigenous PhD 5000 Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haq Nawaz Bhatti or Muhammad Bilal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, M., Bhatti, H.N., Sadaf, S. et al. Optimization of Lipase Production by Response Surface Methodology and Its Application for Efficient Biodegradation of Polyester vylon-200. Catal Lett 151, 3603–3616 (2021). https://doi.org/10.1007/s10562-021-03603-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03603-x

Keywords

Navigation